17 research outputs found

    Global analysis of ZNF217 chromatin occupancy in the breast cancer cell genome reveals an association with ERalpha.

    Get PDF
    BackgroundThe ZNF217 gene, encoding a C2H2 zinc finger protein, is located at 20q13 and found amplified and overexpressed in greater than 20% of breast tumors. Current studies indicate ZNF217 drives tumorigenesis, yet the regulatory mechanisms of ZNF217 are largely unknown. Because ZNF217 associates with chromatin modifying enzymes, we postulate that ZNF217 functions to regulate specific gene signaling networks. Here, we present a large-scale functional genomic analysis of ZNF217, which provides insights into the regulatory role of ZNF217 in MCF7 breast cancer cells.ResultsChIP-seq analysis reveals that the majority of ZNF217 binding sites are located at distal regulatory regions associated with the chromatin marks H3K27ac and H3K4me1. Analysis of ChIP-seq transcription factor binding sites shows clustering of ZNF217 with FOXA1, GATA3 and ERalpha binding sites, supported by the enrichment of corresponding motifs for the ERalpha-associated cis-regulatory sequences. ERalpha expression highly correlates with ZNF217 in lysates from breast tumors (n = 15), and ERalpha co-precipitates ZNF217 and its binding partner CtBP2 from nuclear extracts. Transcriptome profiling following ZNF217 depletion identifies differentially expressed genes co-bound by ZNF217 and ERalpha; gene ontology suggests a role for ZNF217-ERalpha in expression programs associated with ER+ breast cancer studies found in the Molecular Signature Database. Data-mining of expression data from breast cancer patients correlates ZNF217 with reduced overall survival.ConclusionsOur genome-wide ZNF217 data suggests a functional role for ZNF217 at ERalpha target genes. Future studies will investigate whether ZNF217 expression contributes to aberrant ERalpha regulatory events in ER+ breast cancer and hormone resistance

    Suz12 binds to silenced regions of the genome in a cell-type-specific manner

    No full text
    Suz12 is a component of the Polycomb group complexes 2, 3, and 4 (PRC 2/3/4). These complexes are critical for proper embryonic development, but very few target genes have been identified in either mouse or human cells. Using a variety of ChIP-chip approaches, we have identified a large set of Suz12 target genes in five different human and mouse cell lines. Interestingly, we found that Suz12 target promoters are cell type specific, with transcription factors and homeobox proteins predominating in embryonal cells and glycoproteins and immunoglobulin-related proteins predominating in adult tumors. We have also characterized the localization of other components of the PRC complex with Suz12 and investigated the overall relationship between Suz12 binding and markers of active versus inactive chromatin, using both promoter arrays and custom tiling arrays. Surprisingly, we find that the PRC complexes can be localized to discrete binding sites or spread through large regions of the mouse and human genomes. Finally, we have shown that some Suz12 target genes are bound by OCT4 in embryonal cells and suggest that OCT4 maintains stem cell self-renewal, in part, by recruiting PRC complexes to certain genes that promote differentiation
    corecore