10 research outputs found
Distant Entanglement of Macroscopic Gas Samples
One of the main ingredients in most quantum information protocols is a
reliable source of two entangled systems. Such systems have been generated
experimentally several years ago for light but has only in the past few years
been demonstrated for atomic systems. None of these approaches however involve
two atomic systems situated in separate environments. This is necessary for the
creation of entanglement over arbitrary distances which is required for many
quantum information protocols such as atomic teleportation. We present an
experimental realization of such distant entanglement based on an adaptation of
the entanglement of macroscopic gas samples containing about 10^11 cesium atoms
shown previously by our group. The entanglement is generated via the
off-resonant Kerr interaction between the atomic samples and a pulse of light.
The achieved entanglement distance is 0.35m but can be scaled arbitrarily. The
feasibility of an implementation of various quantum information protocols using
macroscopic samples of atoms has therefore been greatly increased. We also
present a theoretical modeling in terms of canonical position and momentum
operators X and P describing the entanglement generation and verification in
presence of decoherence mechanisms.Comment: 20 pages book-style, 3 figure
Entangled light from Bose-Einstein condensates
We propose a method to generate entangled light with a Bose-Einstein
condensate trapped in a cavity, a system realized in recent experiments. The
atoms of the condensate are trapped in a periodic potential generated by a
cavity mode. The condensate is continuously pumped by a laser and spontaneously
emits a pair of photons of different frequencies in two distinct cavity modes.
In this way, the condensate mediates entanglement between two cavity modes
which leak out and can be separated and exhibit continuous variable
entanglement. The scheme exploits the experimentally demonstrated strong,
steady and collective coupling of condensate atoms to a cavity field.Comment: 5 pages and 5 figure
Time gating of heralded single photons for atomic memories
We demonstrate a method for time gating the standard heralded continuous-
wave (cw) spontaneous parametric down-converted (SPDC) single photon source by
using pulsed pumping of the optical parametric oscillator (OPO) below
threshold. The narrow bandwidth, high purity, high spectral brightness and the
pseudo-deterministic character make the source highly suitable for light-atom
interfaces with atomic memories.Comment: Accepted for publication in Optics Letter
Characterizing the spin state of an atomic ensemble using the magneto-optical resonance method
Quantum information protocols utilizing atomic ensembles require preparation
of a coherent spin state (CSS) of the ensemble as an important starting point.
We investigate the magneto-optical resonance method for characterizing a spin
state of cesium atoms in a paraffin coated vapor cell. Atoms in a constant
magnetic field are subject to an off-resonant laser beam and an RF magnetic
field. The spectrum of the Zeeman sub-levels, in particular the weak quadratic
Zeeman effect, enables us to measure the spin orientation, the number of atoms,
and the transverse spin coherence time. Notably the use of 894nm pumping light
on the D1-line, ensuring the state F=4, m_F=4 to be a dark state, helps us to
achieve spin orientation of better than 98%. Hence we can establish a CSS with
high accuracy which is critical for the analysis of the entangled states of
atoms.Comment: 12 pages ReVTeX, 6 figures, in v2 added ref. and corrected typo
Experimental demonstration of quantum memory for light
The information carrier of today's communications, a weak pulse of light, is
an intrinsically quantum object. As a consequence, complete information about
the pulse cannot, even in principle, be perfectly recorded in a classical
memory. In the field of quantum information this has led to a long standing
challenge: how to achieve a high-fidelity transfer of an independently prepared
quantum state of light onto the atomic quantum state? Here we propose and
experimentally demonstrate a protocol for such quantum memory based on atomic
ensembles. We demonstrate for the first time a recording of an externally
provided quantum state of light onto the atomic quantum memory with a fidelity
up to 70%, significantly higher than that for the classical recording. Quantum
storage of light is achieved in three steps: an interaction of light with
atoms, the subsequent measurement on the transmitted light, and the feedback
onto the atoms conditioned on the measurement result. Density of recorded
states 33% higher than that for the best classical recording of light on atoms
is achieved. A quantum memory lifetime of up to 4 msec is demonstrated.Comment: 22 pages (double line spacing) incl. supplementary information, 4
figures, accepted for publication in Natur