2 research outputs found

    Changing Patterns of Bloodstream Infections in the Community and Acute Care Across 2 Coronavirus Disease 2019 Epidemic Waves: A Retrospective Analysis Using Data Linkage

    Get PDF
    BackgroundWe examined community- and hospital-acquired bloodstream infections (BSIs) in coronavirus disease 2019 (COVID-19) and non-COVID-19 patients across 2 epidemic waves.MethodsWe analyzed blood cultures of patients presenting to a London hospital group between January 2020 and February 2021. We reported BSI incidence, changes in sampling, case mix, healthcare capacity, and COVID-19 variants.ResultsWe identified 1047 BSIs from 34 044 blood cultures, including 653 (62.4%) community-acquired and 394 (37.6%) hospital-acquired. Important pattern changes were seen. Community-acquired Escherichia coli BSIs remained below prepandemic level during COVID-19 waves, but peaked following lockdown easing in May 2020, deviating from the historical trend of peaking in August. The hospital-acquired BSI rate was 100.4 per 100 000 patient-days across the pandemic, increasing to 132.3 during the first wave and 190.9 during the second, with significant increase in elective inpatients. Patients with a hospital-acquired BSI, including those without COVID-19, experienced 20.2 excess days of hospital stay and 26.7% higher mortality, higher than reported in prepandemic literature. In intensive care, the BSI rate was 421.0 per 100 000 intensive care unit patient-days during the second wave, compared to 101.3 pre-COVID-19. The BSI incidence in those infected with the severe acute respiratory syndrome coronavirus 2 Alpha variant was similar to that seen with earlier variants.ConclusionsThe pandemic have impacted the patterns of community- and hospital-acquired BSIs, in COVID-19 and non-COVID-19 patients. Factors driving the patterns are complex. Infection surveillance needs to consider key aspects of pandemic response and changes in healthcare practice

    Development and delivery of a real-time hospital-onset COVID-19 surveillance system using network analysis

    Get PDF
    Background Understanding nosocomial acquisition, outbreaks, and transmission chains in real time will be fundamental to ensuring infection-prevention measures are effective in controlling coronavirus disease 2019 (COVID-19) in healthcare. We report the design and implementation of a hospital-onset COVID-19 infection (HOCI) surveillance system for an acute healthcare setting to target prevention interventions. Methods The study took place in a large teaching hospital group in London, United Kingdom. All patients tested for SARS-CoV-2 between 4 March and 14 April 2020 were included. Utilizing data routinely collected through electronic healthcare systems we developed a novel surveillance system for determining and reporting HOCI incidence and providing real-time network analysis. We provided daily reports on incidence and trends over time to support HOCI investigation and generated geotemporal reports using network analysis to interrogate admission pathways for common epidemiological links to infer transmission chains. By working with stakeholders the reports were co-designed for end users. Results Real-time surveillance reports revealed changing rates of HOCI throughout the course of the COVID-19 epidemic, key wards fueling probable transmission events, HOCIs overrepresented in particular specialties managing high-risk patients, the importance of integrating analysis of individual prior pathways, and the value of co-design in producing data visualization. Our surveillance system can effectively support national surveillance. Conclusions Through early analysis of the novel surveillance system we have provided a description of HOCI rates and trends over time using real-time shifting denominator data. We demonstrate the importance of including the analysis of patient pathways and networks in characterizing risk of transmission and targeting infection-control interventions
    corecore