15 research outputs found

    Females have a larger hippocampus than males in the brood-parasitic brown-headed cowbird

    No full text
    Females of the brood-parasitic brown-headed cowbird (Molothrus ater) search for host nests in which to lay their eggs. Females normally return to lay a single egg from one to several days after first locating a potential host nest and lay up to 40 eggs in a breeding season. Male brown-headed cowbirds do not assist females in locating nests. We predicted that the spatial abilities required to locate and return accurately to host nests may have produced a sex difference in the size of the hippocampal complex in cowbirds, in favor of females. The size of the hippocampal complex, relative to size of the telencephalon, was found to be greater in female than in mate cowbirds. No sex difference was found in two closely related nonparasitic icterines, the red-winged blackbird (Agelaius phoeniceus) and the common grackle (Quiscalus quiscula). Other differences among these species in parental care, migration, foraging, and diet are unlikely to have produced the sex difference attributed to search for host nests by female cowbirds. This is one of few indications, in any species, of greater specialization for spatial ability in females and confirms that use of space, rather than sex, breeding system, or foraging behavior per se, can influence the relative size of the hippocampus

    The evolution of hippocampus volume and brain size in relation to food hoarding in birds

    No full text
    Food-hoarding birds frequently use spatial memory to relocate their caches, thus they may evolve a larger hippocampus in their brain than non-hoarder species. However, previous studies testing for such interspecific relationships provided conflicting results. In addition, food hoarding may be a cognitively complex task involving elaboration of a variety of brain regions, even outside of the hippocampus. Hence, specialization to food hoarding may also result in the enlargement of the overall brain. In a phylogenetic analysis of distantly related birds, we studied the interspecific association between food hoarding and the size of different brain regions, each reflecting different resolutions. After adjusting for allometric effects, the relative volume of the hippocampus and the relative size of the entire brain were each positively related to the degree of food-hoarding specialization, even after controlling for migration and brood parasitism. We also found some significant evidence for the relative volume of the telencephalon being associated with food hoarding, but this relationship was dependent on the approach we used. Hence, neural adaptation to food hoarding may favour the evolution of different brain structures

    Survival of Afro‐Palaearctic passerine migrants in western Europe and the impacts of seasonal weather variables

    No full text
    Populations of migratory songbirds in western Europe show considerable variation in population trends between species and regions. The demographic and environmental causes of these large-scale patterns are poorly understood. Using data from Constant Effort mist-netting studies, we investigated relationships between changes in abundance, adult survival and seasonal weather conditions among 35 western European populations of eight species of migratory warblers (Sylviidae). We used cross-species and within-species comparisons to assess whether annual variation in survival was correlated with weather conditions during passage or winter. We estimated survival using CJS mark-recapture models accounting for variation in the proportion of transient individuals and recapture rates. Species wintering in the humid bioclimatic zone of western Africa had significantly higher annual survival probabilities than species wintering in the arid bioclimatic zone of Africa (the Sahel). Rainfall in the Sahel was positively correlated with survival in at least some populations of five species. We found substantially fewer significant relationships with indices of weather during the autumn and spring passage periods, which may be due to the use of broad-scale indices. Annual population changes were correlated with adult survival in all of our study species, although species undergoing widespread declines showed the weakest relationships
    corecore