2,069 research outputs found

    Subtle changes in the flavour and texture of a drink enhance expectations of satiety

    Get PDF
    Background: The consumption of liquid calories has been implicated in the development of obesity and weight gain. Energy-containing drinks are often reported to have a weak satiety value: one explanation for this is that because of their fluid texture they are not expected to have much nutritional value. It is important to consider what features of these drinks can be manipulated to enhance their expected satiety value. Two studies investigated the perception of subtle changes in a drink’s viscosity, and the extent to which thick texture and creamy flavour contribute to the generation of satiety expectations. Participants in the first study rated the sensory characteristics of 16 fruit yogurt drinks of increasing viscosity. In study two, a new set of participants evaluated eight versions of the fruit yogurt drink, which varied in thick texture, creamy flavour and energy content, for sensory and hedonic characteristics and satiety expectations. Results: In study one, participants were able to perceive small changes in drink viscosity that were strongly related to the actual viscosity of the drinks. In study two, the thick versions of the drink were expected to be more filling and have a greater expected satiety value, independent of the drink’s actual energy content. A creamy flavour enhanced the extent to which the drink was expected to be filling, but did not affect its expected satiety. Conclusions: These results indicate that subtle manipulations of texture and creamy flavour can increase expectations that a fruit yogurt drink will be filling and suppress hunger, irrespective of the drink’s energy content. A thicker texture enhanced expectations of satiety to a greater extent than a creamier flavour, and may be one way to improve the anticipated satiating value of energy-containing beverages

    Fragile X syndrome: Diagnostic and carrier testing

    Get PDF
    The following are the recommendations of the American College of Medical Genetics (ACMG) Professional Practice and Guidelines Committee, convened to assist health care professionals in making decisions regarding genetic diagnosis and testing. The purpose of this document is to provide a brief overview of fragile X syndrome (FXS), and to make recommendations that can serve as general guidelines to aid clinicians in making referrals for diagnostic and carrier testing for this condition. Fragile X syndrome is the most common cause of inherited mental retardation and is caused by a mutation in the X-linked FMR1 gene. DNA studies are used for testing individuals with symptoms of FXS and individuals at risk for carrying the mutation. Genotypes are determined by examining the size of the trinucleotide repeat segment and the methylation status of the FMR1 gene. These guidelines supersede the 1994 ACMG statement of the same name

    Experimentally manipulated self-affirmation promotes reduced alcohol consumption in response to narrative information

    Get PDF
    Background: Health-risk information is increasingly being conveyed through accounts of personal experiences or narrative information. However, whether self-affirmation can enhance the ability of such messages to promote behavior change has yet to be established. Purpose: This study aims to test whether self-affirmation (a) promotes behavior change following exposure to narrative information about the risks of excessive alcohol consumption and (b) boosts message acceptance by increasing narrative engagement. Methods: In an experimental design, female drinkers (N = 142) reported their baseline alcohol consumption and were randomly allocated to condition (Self-Affirmation, Control). All participants next watched an extract of a genuine narrative piece in which the central character discussed her liver disease and its link with her previous alcohol consumption. Then, participants completed measures assessing engagement with the narrative and message acceptance. The primary outcome was alcohol consumption, assessed at 7-day follow-up. Results: Self-affirmed participants reported consuming significantly less alcohol at follow-up compared to baseline (mean 7-day decrease = 5.43 units); there was no change in alcohol consumption for the control group. Immediately post-manipulation, self-affirmed participants (vs. control) showed more message acceptance and reported greater engagement with the information. The impact of self-affirmation on message acceptance was mediated by narrative engagement. Conclusions: Self-affirmation can promote behavior change following exposure to health information, even when presented in narrative form

    Beacon Virtua: A Virtual Reality Simulation Detailing the Recent and Shipwreck History of Beacon Island, Western Australia

    Get PDF
    Beacon Virtua is a project to document and virtually preserve a historically significant offshore island as a virtual reality experience. In 1629, survivors of the wreck of VOC ship Batavia took refuge on Beacon Island, Western Australia, followed by a mutiny and massacre. In the 1950s the island became the base of a successful fishing industry, and in 1963 human remains from Batavia were located. The fishing community has recently been moved off the island to protect and preserve the site and allow a thorough archaeological investigation of the island. Beacon Virtua exposes users to the history of both the shipwreck survivors and the fishing community. The project uses the virtual environment development software Unity to present a simulation of the island, with 3D models of buildings and jetties, photogrammetric 3D reconstructions of graves and other features, 360° photographic panoramas, and information on the history of the island. The experience has been made available on a wide range of different platforms including via a web-page, as part of an exhibition, and on head mounted displays (VR headsets). This chapter discusses the features included in Beacon Virtua, the storytelling techniques used in the simulation, the challenges encountered and solutions used during the project

    Social and Physical Environments and Disparities in Risk for Cardiovascular Disease: The Healthy Environments Partnership Conceptual Model

    Get PDF
    The Healthy Environments Partnership (HEP) is a community-based participatory research effort investigating variations in cardiovascular disease risk, and the contributions of social and physical environments to those variations, among non-Hispanic black, non-Hispanic white, and Hispanic residents in three areas of Detroit, Michigan. Initiated in October 2000 as a part of the National Institute of Environmental Health Sciences’ Health Disparities Initiative, HEP is affiliated with the Detroit Community–Academic Urban Research Center. The study is guided by a conceptual model that considers race-based residential segregation and associated concentrations of poverty and wealth to be fundamental factors influencing multiple, more proximate predictors of cardiovascular risk. Within this model, physical and social environments are identified as intermediate factors that mediate relationships between fundamental factors and more proximate factors such as physical activity and dietary practices that ultimately influence anthropomorphic and physiologic indicators of cardiovascular risk. The study design and data collection methods were jointly developed and implemented by a research team based in community-based organizations, health service organizations, and academic institutions. These efforts include collecting and analyzing airborne particulate matter over a 3-year period; census and administrative data; neighborhood observation checklist data to assess aspects of the physical and social environment; household survey data including information on perceived stressors, access to social support, and health-related behaviors; and anthropometric, biomarker, and self-report data as indicators of cardiovascular health. Through these collaborative efforts, HEP seeks to contribute to an understanding of factors that contribute to racial and socioeconomic health inequities, and develop a foundation for efforts to eliminate these disparities in Detroit

    Fusion and Fission of Genes Define a Metric between Fungal Genomes

    Get PDF
    Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species. We collected an inventory of 1,680 elementary fusion and fission events. In half the cases, both composite and element genes are found in the same species. Per-species counts of events correlate with the species genome size, suggesting a random mechanism of occurrence. Some biological functions of the genes involved in fusion and fission events are slightly over- or under-represented. As already noted in previous studies, the genes involved in an event tend to belong to the same functional category. We inferred the position of each event in the evolution tree of the 12 fungal species. The event localization counts for all the segments of the tree provide a metric that depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as distance in adaptation space is proposed
    corecore