12,180 research outputs found

    Magnetic incommensurability and fluctuating charge density waves in the repulsive Hubbard model

    Full text link
    Magnetic and charge susceptibilities of the two-dimensional repulsive Hubbard model are investigated applying a strong coupling diagram technique in which the expansion in powers of the hopping constants is used. For small lattices and high temperatures results are in agreement with Monte Carlo simulations. With the departure from half-filling xx the low-frequency magnetic susceptibility becomes incommensurate and the incommensurability parameter grows with xx. The incommensurability, its dependence on frequency and on xx resemble experimental results in lanthanum cuprates. Also for finite xx sharp maxima appear in the static charge susceptibility. The maxima are finite which points to the absence of the long-range charge ordering (static stripes). However, for x≈0.12x\approx 0.12 the maxima are located near the momenta (0,±π/2)(0,\pm\pi/2), (±π/2,0)(\pm\pi/2,0). In this case an interaction of carriers with tetragonal distortions can stabilize stripes with the wavelength of four lattice spacings, as observed in the low-temperature tetragonal phase of cuprates. As follows from the obtained results, the magnetic incommensurability is not a consequence of the stripes.Comment: 4 pages, 3 figures, manuscript for proceefings of LT2

    The t-J model on a semi-infinite lattice

    Full text link
    The hole spectral function of the t-J model on a two-dimensional semi-infinite lattice is calculated using the spin-wave and noncrossing approximations. In the case of small hole concentration and strong correlations, t≫Jt\gg J, several near-boundary site rows appear to be depleted of holes. The reason for this depletion is a deformation of the magnon cloud, which surrounds the hole, near the boundary. The hole depletion in the boundary region leads to a more complicated spectral function in the boundary row in comparison with its bulk shape.Comment: 8 pages, 5 figure

    Near-Boundary and Bulk Regions of a Semi-Infinite Two-Dimensional Heisenberg Antiferromagnet

    Full text link
    Using the spin-wave approximation elementary excitations of a semi-infinite two-dimensional S=12S=\frac12 Heisenberg antiferromagnet are considered. The spectrum consists of bulk modes -- standing spin waves and a quasi-one-dimensional mode of boundary spin waves. These latter excitations eject bulk modes from two boundary rows of sites, thereby dividing the antiferromagnet into two regions with different dominant excitations. As a result absolute values of nearest-neighbor spin correlations on the edge exceed the bulk value.Comment: 8 pages, 3 figure

    Coherent Excitation of the 6S1/2 to 5D3/2 Electric Quadrupole Transition in 138Ba+

    Full text link
    The electric dipole-forbidden, quadrupole 6S1/2 5D3/2 transition in Ba+ near 2051 nm, with a natural linewidth of 13 mHz, is attractive for potential observation of parity non-conservation, and also as a clock transition for a barium ion optical frequency standard. This transition also offers a direct means of populating the metastable 5D3/2 state to measure the nuclear magnetic octupole moment in the odd barium isotopes. Light from a diode-pumped, solid state Tm,Ho:YLF laser operating at 2051 nm is used to coherently drive this transition between resolved Zeeman levels in a single trapped 138Ba+ ion. The frequency of the laser is stabilized to a high finesse Fabry Perot cavity at 1025 nm after being frequency doubled. Rabi oscillations on this transition indicate a laser-ion coherence time of 3 ms, most likely limited by ambient magnetic field fluctuations.Comment: 5 pages, 5 figure

    Chromatic Ramsey number of acyclic hypergraphs

    Get PDF
    Suppose that TT is an acyclic rr-uniform hypergraph, with r≥2r\ge 2. We define the (tt-color) chromatic Ramsey number χ(T,t)\chi(T,t) as the smallest mm with the following property: if the edges of any mm-chromatic rr-uniform hypergraph are colored with tt colors in any manner, there is a monochromatic copy of TT. We observe that χ(T,t)\chi(T,t) is well defined and ⌈Rr(T,t)−1r−1⌉+1≤χ(T,t)≤∣E(T)∣t+1\left\lceil {R^r(T,t)-1\over r-1}\right \rceil +1 \le \chi(T,t)\le |E(T)|^t+1 where Rr(T,t)R^r(T,t) is the tt-color Ramsey number of HH. We give linear upper bounds for χ(T,t)\chi(T,t) when T is a matching or star, proving that for r≥2,k≥1,t≥1r\ge 2, k\ge 1, t\ge 1, χ(Mkr,t)≤(t−1)(k−1)+2k\chi(M_k^r,t)\le (t-1)(k-1)+2k and χ(Skr,t)≤t(k−1)+2\chi(S_k^r,t)\le t(k-1)+2 where MkrM_k^r and SkrS_k^r are, respectively, the rr-uniform matching and star with kk edges. The general bounds are improved for 33-uniform hypergraphs. We prove that χ(Mk3,2)=2k\chi(M_k^3,2)=2k, extending a special case of Alon-Frankl-Lov\'asz' theorem. We also prove that χ(S23,t)≤t+1\chi(S_2^3,t)\le t+1, which is sharp for t=2,3t=2,3. This is a corollary of a more general result. We define H[1]H^{[1]} as the 1-intersection graph of HH, whose vertices represent hyperedges and whose edges represent intersections of hyperedges in exactly one vertex. We prove that χ(H)≤χ(H[1])\chi(H)\le \chi(H^{[1]}) for any 33-uniform hypergraph HH (assuming χ(H[1])≥2\chi(H^{[1]})\ge 2). The proof uses the list coloring version of Brooks' theorem.Comment: 10 page

    Low-Frequency Quantum Oscillations due to Strong Electron Correlations

    Full text link
    The normal-state energy spectrum of the two-dimensional tt-JJ model in a homogeneous perpendicular magnetic field is investigated. The density of states at the Fermi level as a function of the inverse magnetic field 1B\frac{1}{B} reveals oscillations in the range of hole concentrations 0.08<x<0.180.08<x<0.18. The oscillations have both high- and low-frequency components. The former components are connected with large Fermi surfaces, while the latter with van Hove singularities in the Landau subbands, which traverse the Fermi level with changing BB. The singularities are related to bending the Landau subbands due to strong electron correlations. Frequencies of these components are of the same order of magnitude as quantum oscillation frequencies observed in underdoped cuprates.Comment: 10 pages, 3 figures, Proc. NSS-2013, Yalta. arXiv admin note: text overlap with arXiv:1308.056

    Aquila X--1: a low inclination soft X-ray transient

    Get PDF
    We have obtained I-band photometry of the neutron star X-ray transient Aql X--1 during quiescence. We find a periodicity at 2.487 cd-1, which we interpret as twice the orbital frequency (19.30+/-0.05 h). Folding the data on the orbital period, we model the light curve variations as the ellipsoidal modulation of the secondary star. We determine the binary inclination to be 20--31 degrees (90 per cent confidence) and also 95 per cent upper limits to the radial velocity semi-amplitude and rotational broadening of the secondary star to be 117 kms-1 and 50 kms-1 respectively.Comment: 4 pages text, 3 figures, to appear in MNRA

    Human Perception and the Color of Flavor

    Get PDF
    Human taste perception can be analyzed in different areas of study. Physiology and psychology work together to construct the way we taste, and our sense of taste is not obtained merely from the tongue. The process of tasting involves olfaction, vision, and texture reception to form our overall perception of taste. The present study involved 25 participants who tasted and rated multiple samples of flavored gelatin. Half of the gelatin samples were unlikely color/flavor combinations, and half were unlikely flavor/scent combinations. Responses to the flavors as perceived were collected and used to gain insight into the interactions among sight, smell, and taste perception

    Resonance peak in underdoped cuprates

    Full text link
    The magnetic susceptibility measured in neutron scattering experiments in underdoped YBa2_2Cu3_3O7−y_{7-y} is interpreted based on the self-consistent solution of the t-J model of a Cu-O plane. The calculations reproduce correctly the frequency and momentum dependencies of the susceptibility and its variation with doping and temperature in the normal and superconducting states. This allows us to interpret the maximum in the frequency dependence -- the resonance peak -- as a manifestation of the excitation branch of localized Cu spins and to relate the frequency of the maximum to the size of the spin gap. The low-frequency shoulder well resolved in the susceptibility of superconducting crystals is connected with a pronounced maximum in the damping of the spin excitations. This maximum is caused by intense quasiparticle peaks in the hole spectral function for momenta near the Fermi surface and by the nesting.Comment: 9 pages, 6 figure
    • …
    corecore