578 research outputs found
Induction of circulating phospholipase A2 by intravenous administration of recombinant human tumour necrosis factor
We have examined the effects of intravenous infusion of recombinant human tumour necrosis factor (rh-TNF) on serum activity of phospholipase A2 (PLA2) in patients with malignancies. Nine patients received a 24 h continuous intravenous infusion ranging from 1.0 × 105 U/m2 to 3.0 × 105 U/m2; 14 patients received a 5 day continuous intravenous infusion ranging from 0.5 × 105 U/m2/day to 3.0 105 U/m2/day. Twenty one of 23 patients responded with marked increases in serum PLA2 activity that were detectable 3 h after the beginning of the rh-TNF infusion and reached maximum levels at 18 h with a mean increase of 16.2-fold. In patients receiving a 5 day rh-TNF infusion, the highest levels of PLA2 were observed after the first day of infusion. Serum PLA2 activity declined continuously to 2.9-fold above baseline at the end of the infusion. A significant correlation was noted between the dose of infused rh-TNF and the maximum increase in PLA2 activity. To our knowledge, this is the first time that an association between intravenous TNF administration and induction of circulating PLA2 in man has been established
Sotatercept safety and effects on hemoglobin, bone, and vascular calcification
Introduction: Patients with end-stage kidney disease (ESKD) exhibit anemia, chronic kidney disease‒mineral bone disorder (CKD-MBD), and cardiovascular disease. The REN-001 and REN-002 phase II, multicenter, randomized studies examined safety, tolerability, and effects of sotatercept, an ActRIIA-IgG1 fusion protein trap, on hemoglobin concentration; REN-001 also explored effects on bone mineral density (BMD) and abdominal aortic vascular calcification.
Methods: Forty-three patients were treated in REN-001 (dose range: sotatercept 0.3‒0.7 mg/kg or placebo subcutaneously [s.c.] for 200 days) and 50 in REN-002 (dose range: 0.1‒0.4 mg/kg i.v. and 0.13‒0.5 mg/kg s.c. for 99 days).
Results: In REN-001, frequency of achieving target hemoglobin response (\u3e10 g/dl [6.21 mmol/l]) with sotatercept was dose-related and greater than placebo (0.3 mg/kg: 33.3%; 0.5 mg/kg: 62.5%; 0.7 mg/kg: 77.8%; 0.7 mg/kg [doses 1 and 2]/0.4 mg/kg [doses 3‒15]: 33.3%; placebo: 27.3%). REN-002 hemoglobin findings were similar (i.v.: 16.7%-57.1%; s.c.: 11.1%‒42.9%). Dose-related achievement of ≥2% increase in femoral neck cortical BMD was seen among only REN-001 patients receiving sotatercept (0.3‒0.7 mg/kg: 20.0%‒57.1%; placebo: 0.0%). Abdominal aortic vascular calcification was slowed in a dose-related manner, with a ≤15% increase in Agatston score achieved by more REN-001 sotatercept versus placebo patients (60%‒100% vs. 16.7%). The most common adverse events during treatment were hypertension, muscle spasm, headache, arteriovenous fistula site complication, and influenza observed in both treatment and placebo groups.
Conclusion: In patients with ESKD, sotatercept exhibited a favorable safety profile and was associated with trends in dose-related slowing of vascular calcification. Less-consistent trends in improved hemoglobin concentration and BMD were observed
Drp2 and Periaxin Form Cajal Bands with Dystroglycan But Have Distinct Roles in Schwann Cell Growth
Cajal bands are cytoplasmic channels flanked by appositions where the abaxonal surface of Schwann cell myelin apposes and adheres to the overlying plasma membrane. These appositions contain a dystroglycan complex that includes periaxin and dystrophin-related protein 2 (Drp2). Loss of periaxin disrupts appositions and Cajal bands in Schwann cells and causes a severe demyelinating neuropathy in mouse and man. Here we have investigated the role of mouse Drp2 in apposition assembly and Cajal band function and compared it to periaxin. We show that Periaxin and Drp2 are not only both required to form appositions, but they must also interact. Periaxin-Drp2 interaction is also required for Drp2 phosphorylation but phosphorylation is not required for the assembly of appositions. Drp2 loss causes corresponding increases in Dystrophin family members, utrophin and dystrophin Dp116 though dystroglycan remains unchanged. We also show that all dystroglycan complexes in Schwann cells utilise the uncleaved form of β-dystroglycan. Drp2-null Schwann cells have disrupted appositions and Cajal bands, and they undergoe focal hypermyelination and concomitant demyelination. Nevertheless, they do not have the short internodal lengths and associated reduced nerve conduction velocity seen in the absence of periaxin, showing that periaxin regulates Schwann cell elongation independent of its role in the dystroglycan complex. We conclude that the primary role of the dystroglycan complex in appositions is to stabilize and limit the radial growth of myelin
Investment in sensory structures, testis size, and wing coloration in males of a diurnal moth species: trade-offs or correlated growth?
For dioecious animals, reproductive success typically involves an exchange between the sexes of signals that provide information about mate location and quality. Typically, the elaborate, secondary sexual ornaments of males signal their quality, while females may signal their location and receptivity. In theory, the receptor structures that receive the latter signals may also become elaborate or enlarged in a way that ultimately functions to enhance mating success through improved mate location. The large, elaborate antennae of many male moths are one such sensory structure, and eye size may also be important in diurnal moths. Investment in these traits may be costly, resulting in trade-offs among different traits associated with mate location. For polyandrous species, such trade-offs may also include traits associated with paternity success, such as larger testes. Conversely, we would not expect this to be the case for monandrous species, where sperm competition is unlikely. We investigated these ideas by evaluating the relationship between investment in sensory structures (antennae, eye), testis, and a putative warning signal (orange hindwing patch) in field-caught males of the monandrous diurnal painted apple moth Teia anartoides (Lepidoptera: Lymantriidae) in southeastern Australia. As predicted for a monandrous species, we found no evidence that male moths with larger sensory structures had reduced investment in testis size. However, contrary to expectation, investment in sensory structures was correlated: males with relatively larger antennae also had relatively larger eyes. Intriguingly, also, the size of male orange hindwing patches was positively correlated with testis size
FAK is required for axonal sorting by Schwann cells
Signaling by laminins and axonal neuregulin has been implicated in regulating axon sorting by myelin-forming Schwann cells. However, the signal transduction mechanisms are unknown. Focal adhesion kinase (FAK) has been linked to α6β1 integrin and ErbB receptor signaling, and we show that myelination by Schwann cells lacking FAK is severely impaired. Mutant Schwann cells could interdigitate between axon bundles, indicating that FAK signaling was not required for process extension. However, Schwann cell FAK was required to stimulate cell proliferation, suggesting that amyelination was caused by insufficient Schwann cells. ErbB2 receptor and AKT were robustly phosphorylated in mutant Schwann cells, indicating that neuregulin signaling from axons was unimpaired. These findings demonstrate the vital relationship between axon defasciculation and Schwann cell number and show the importance of FAK in regulating cell proliferation in the developing nervous system
A donor-chromophore-catalyst assembly for solar CO2 reduction
We describe here the preparation and characterization of a photocathode assembly for CO2 reduction to CO in 0.1 M LiClO4 acetonitrile. The assembly was formed on 1.0 μm thick mesoporous films of NiO using a layer-by-layer procedure based on Zr(IV)–phosphonate bridging units. The structure of the Zr(IV) bridged assembly, abbreviated as NiO|-DA-RuCP22+-Re(I), where DA is the dianiline-based electron donor (N,N,N′,N′-((CH2)3PO3H2)4-4,4′-dianiline), RuCP2+ is the light absorber [Ru((4,4′-(PO3H2CH2)2-2,2′-bipyridine)(2,2′-bipyridine))2]2+, and Re(I) is the CO2 reduction catalyst, ReI((4,4′-PO3H2CH2)2-2,2′-bipyridine)(CO)3Cl. Visible light excitation of the assembly in CO2 saturated solution resulted in CO2 reduction to CO. A steady-state photocurrent density of 65 μA cm−2 was achieved under one sun illumination and an IPCE value of 1.9% was obtained with 450 nm illumination. The importance of the DA aniline donor in the assembly as an initial site for reduction of the RuCP2+ excited state was demonstrated by an 8 times higher photocurrent generated with DA present in the surface film compared to a control without DA. Nanosecond transient absorption measurements showed that the expected reduced one-electron intermediate, RuCP+, was formed on a sub-nanosecond time scale with back electron transfer to the electrode on the microsecond timescale which competes with forward electron transfer to the Re(I) catalyst at t1/2 = 2.6 μs (kET = 2.7 × 105 s−1)
Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode
Dye-sensitized photoelectrosynthesis cells (DSPECs) provide a basis for artificial photosynthesis and solar fuels production. By combining molecular chromophores and catalysts with high surface area, transparent semiconductor electrodes, a DSPEC provides the basis for light-driven conversion of water to O2 and H2 or for reduction of CO2 to carbon-based fuels. The incorporation of plasmonic cubic silver nanoparticles, with a strongly localized surface plasmon absorbance near 450 nm, to a DSPEC photoanode induces a great increase in the efficiency of water oxidation to O2 at a DSPEC photoanode. The improvement in performance by the molecular components in the photoanode highlights a remarkable advantage for the plasmonic effect in driving the 4e-/4H+ oxidation of water to O2 in the photoanode
- …