42 research outputs found

    Scanpath analysis of expertise and culture in teacher gaze in real-world classrooms

    Get PDF
    Humans are born to learn by understanding where adults look. This is likely to extend into the classroom, making teacher gaze an important topic for study. Expert teacher gaze has mainly been investigated in the laboratory, and has focused mostly on one cognitive process: teacher attentional (i.e., information-seeking) gaze. No known research has made direct cultural comparisons of teacher gaze or successfully found expert–novice differences outside Western settings. Accordingly, we conducted a real-world study of expert teacher gaze across two cultural settings, exploring communicative (i.e., information-giving) as well as attentional gaze. Forty secondary school teachers wore eye-tracking glasses, with 20 teachers (10 expert; 10 novice) from the UK and 20 teachers (10 expert; 10 novice) from Hong Kong. We used a novel eye-tracking scanpath analysis to ascertain the importance of expertise and culture, individually and as a combination. Attentional teacher scanpaths were significantly more similar within than across expertise and expertise + culture sub-groups; communicative scanpaths were significantly more similar within than across expertise and culture. Detailed analysis suggests that (1) expert teachers refer back to students constantly through focused gaze during both attentional and communicative gaze and that (2) expert teachers in Hong Kong scan students more than experts do in the UK

    Will the original glucose transporter isoform please stand up!

    No full text
    Monosaccharides enter cells by slow translipid bilayer diffusion by rapid, protein-mediated, cation-dependent cotransport and by rapid, protein-mediated equilibrative transport. This review addresses protein-mediated, equilibrative glucose transport catalyzed by GLUT1, the first equilibrative glucose transporter to be identified, purified, and cloned. GLUT1 is a polytopic, membrane-spanning protein that is one of 13 members of the human equilibrative glucose transport protein family. We review GLUT1 catalytic and ligand-binding properties and interpret these behaviors in the context of several putative mechanisms for protein-mediated transport. We conclude that no single model satisfactorily explains GLUT1 behavior. We then review GLUT1 topology, subunit architecture, and oligomeric structure and examine a new model for sugar transport that combines structural and kinetic analyses to satisfactorily reproduce GLUT1 behavior in human erythrocytes. We next review GLUT1 cell biology and the transcriptional and posttranscriptional regulation of GLUT1 expression in the context of development and in response to glucose perturbations and hypoxia in blood-tissue barriers. Emphasis is placed on transgenic GLUT1 overexpression and null mutant model systems, the latter serving as surrogates for the human GLUT1 deficiency syndrome. Finally, we review the role of GLUT1 in the absence or deficiency of a related isoform, GLUT3, toward establishing the physiological significance of coordination between these two isoforms

    Adenosine, Caffeine, and Performance: From Cognitive Neuroscience of Sleep to Sleep Pharmacogenetics

    Full text link
    An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine adenosine , plays an important role in regulating sleep pressure, pharmacologic and genetic data in animals and humans demonstrate that differences in adenosinergic tone affect sleepiness, arousal and vigilant attention attention in rested and sleep-deprived states. Caffeine Caffeine -the most often consumed stimulant in the world-blocks adenosine receptors and normally attenuates the consequences of sleep deprivation on arousal, vigilance, and attention. Nevertheless, caffeine cannot substitute for sleep, and is virtually ineffective in mitigating the impact of severe sleep loss on higher-order cognitive functions. Thus, the available evidence suggests that adenosinergic mechanisms, in particular adenosine A2A receptor-mediated signal transduction, contribute to waking-induced impairments of attentional processes, whereas additional mechanisms must be involved in higher-order cognitive consequences of sleep deprivation. Future investigations should further clarify the exact types of cognitive processes affected by inappropriate sleep. This research will aid in the quest to better understand the role of different brain systems (e.g., adenosine and adenosine receptors) in regulating sleep, and sleep-related subjective state, and cognitive processes. Furthermore, it will provide more detail on the underlying mechanisms of the detrimental effects of extended wakefulness, as well as lead to the development of effective, evidence-based countermeasures against the health consequences of circadian misalignment and chronic sleep restriction
    corecore