5,605 research outputs found
The Family of MapReduce and Large Scale Data Processing Systems
In the last two decades, the continuous increase of computational power has
produced an overwhelming flow of data which has called for a paradigm shift in
the computing architecture and large scale data processing mechanisms.
MapReduce is a simple and powerful programming model that enables easy
development of scalable parallel applications to process vast amounts of data
on large clusters of commodity machines. It isolates the application from the
details of running a distributed program such as issues on data distribution,
scheduling and fault tolerance. However, the original implementation of the
MapReduce framework had some limitations that have been tackled by many
research efforts in several followup works after its introduction. This article
provides a comprehensive survey for a family of approaches and mechanisms of
large scale data processing mechanisms that have been implemented based on the
original idea of the MapReduce framework and are currently gaining a lot of
momentum in both research and industrial communities. We also cover a set of
introduced systems that have been implemented to provide declarative
programming interfaces on top of the MapReduce framework. In addition, we
review several large scale data processing systems that resemble some of the
ideas of the MapReduce framework for different purposes and application
scenarios. Finally, we discuss some of the future research directions for
implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author
Current rectification in a single molecule diode: the role of electrode coupling
We demonstrate large rectification ratios (> 100) in single-molecule
junctions based on a metal-oxide cluster (polyoxometalate), using a scanning
tunneling microscope (STM) both at ambient conditions and at low temperature.
These rectification ratios are the largest ever observed in a single-molecule
junction, and in addition these junctions sustain current densities larger than
10^5 A/cm^2. By following the variation of the I-V characteristics with
tip-molecule separation we demonstrate unambiguously that rectification is due
to asymmetric coupling to the electrodes of a molecule with an asymmetric level
structure. This mechanism can be implemented in other type of molecular
junctions using both organic and inorganic molecules and provides a simple
strategy for the rational design of molecular diodes
A hybrid neuro--wavelet predictor for QoS control and stability
For distributed systems to properly react to peaks of requests, their
adaptation activities would benefit from the estimation of the amount of
requests. This paper proposes a solution to produce a short-term forecast based
on data characterising user behaviour of online services. We use \emph{wavelet
analysis}, providing compression and denoising on the observed time series of
the amount of past user requests; and a \emph{recurrent neural network} trained
with observed data and designed so as to provide well-timed estimations of
future requests. The said ensemble has the ability to predict the amount of
future user requests with a root mean squared error below 0.06\%. Thanks to
prediction, advance resource provision can be performed for the duration of a
request peak and for just the right amount of resources, hence avoiding
over-provisioning and associated costs. Moreover, reliable provision lets users
enjoy a level of availability of services unaffected by load variations
When group members admit to being conformist: the role of relative intragroup status in conformity self-reports
Authors' draft; final version published in Personality and Social Psychology BulletinFive studies examined the hypothesis that people will strategically portray the self as being more group influenced the more junior they feel within the group. Among social psychologists (Study 1), ratings of self-conformity by group members were greater when the status of the participant was low than when it was high. These effects were replicated in Studies 2, 3, and 4 in which relative intragroup status was manipulated. In Study 3, the authors found junior group members described themselves as more conformist than senior members when they were addressing an ingroup audience, but when they were addressing an outgroup audience the effect disappeared. Furthermore, junior members (but not senior members) rated themselves as more conformist when they were led to believe their responses were public than when responses were private (Study 5). The discussion focuses on the strategic processes underlying low-status group members’ self-reports of group influence and the functional role of conformity in groups
The Impact of the Extent of Lymphadenectomy on Oncologic Outcomes in Patients Undergoing Radical Cystectomy for Bladder Cancer : A Systematic Review
Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.Peer reviewedPostprin
Universality in movie rating distributions
In this paper histograms of user ratings for movies (1,...,10) are analysed.
The evolving stabilised shapes of histograms follow the rule that all are
either double- or triple-peaked. Moreover, at most one peak can be on the
central bins 2,...,9 and the distribution in these bins looks smooth
`Gaussian-like' while changes at the extremes (1 and 10) often look abrupt. It
is shown that this is well approximated under the assumption that histograms
are confined and discretised probability density functions of L\'evy skew
alpha-stable distributions. These distributions are the only stable
distributions which could emerge due to a generalized central limit theorem
from averaging of various independent random avriables as which one can see the
initial opinions of users. Averaging is also an appropriate assumption about
the social process which underlies the process of continuous opinion formation.
Surprisingly, not the normal distribution achieves the best fit over histograms
obseved on the web, but distributions with fat tails which decay as power-laws
with exponent -(1+alpha) (alpha=4/3). The scale and skewness parameters of the
Levy skew alpha-stable distributions seem to depend on the deviation from an
average movie (with mean about 7.6). The histogram of such an average movie has
no skewness and is the most narrow one. If a movie deviates from average the
distribution gets broader and skew. The skewness pronounces the deviation. This
is used to construct a one parameter fit which gives some evidence of
universality in processes of continuous opinion dynamics about taste.Comment: 8 pages, 5 figures, accepted for publicatio
Numerical analysis of piled embankments on soft soils
The construction of embankments on soft soils is a common problem. Soft soil cannot sustain external loads without having large deformations. Piled embankments system provides a possible solution for the construction of roads and railways over soft soils. Until now, the system behaviour could only be described by analytical models such as those included in British or German codes. This paper describes research undertaken to investigate the effects of pile embankment construction in soft soils. Experimental results are used to help investigate arching effect developed due to differential settlement between pile and surrounding soft soil. A numerical parametric study was carried out to examine the impact of various soil parameters on the pile-embankment system behaviour. The outcome of the parametric study implemented using numerical analysis has been investigated and discussed throughout this paper. Based on the numerical analysis carried out in this research, it was found that the earth pressure coefficient normalized by the passive earth pressure Kp plotted on a vertical profile at the midpoint between piles can give a good illustration of arching behaviour. The findings presented in this paper can be considered as guides for numerical analysis and design criteria of soil arching for embankments constructed over piles
Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study
The interface between the matrix phase and dispersed phase of a composite plays a critical role in influencing its properties. However, the intricate mecha-nisms of interface are not fully understood, and polymer nanocomposites are no exception. This study compares the fabrication, morphology, and mechanical and thermal properties of epoxy nanocomposites tuned by clay layers (denoted as m-clay) and graphene platelets (denoted as m-GP). It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface between the filler mate-rial and epoxy matrix. This was confirmed by Fourier transform infrared spectroscopy and transmission electron microscope. The enhanced interface led to improved mechanical properties (i.e. stiffness modulus, fracture toughness) and higher glass transition temperatures (Tg) compared with neat epoxy. At 4 wt% m-GP, the critical strain energy release rate G1c of neat epoxy improved by 240 % from 179.1 to 608.6 J/m2 and Tg increased from 93.7 to 106.4 �C. In contrast to m-clay, which at 4 wt%, only improved the G1c by 45 % and Tg by 7.1 %. The higher level of improvement offered by m-GP is attributed to the strong interaction of graphene sheets with epoxy because the covalent bonds between the carbon atoms of graphene sheets are much stronger than silicon-based clay
- …
