3,743 research outputs found
Total Quality Management and Construction Project Management in Libya
Merged with duplicate record 10026.1/647 on 14.03.2017 by CS (TIS)This thesis sought to explore Total quality management (TQM) implementation
and barriers that need to be overcome due to differences between societal
cultures, which have become a subject of intense discussion in the wake of the
globalisation of the world economy. lnter-societal cultural barriers to TQM
implementation were contrasted against the accepted organisational cultural
barriers, which are well documented in established literature on this topic. A
case study for the analysis was taken from the Libyan construction sector,
where TQM is increasingly being reported as being adopted by companies
keen to solve quality problems in their industry. This research explored the
barriers that exist and that have acted to hinder the adoption of TQM practices
using an in-depth survey of two Libyan construction companies (A&B). The
findings of this research are presented as a conceptual framework upon which
proactive measure may be planned to improve TQM adoption and which may
also act as a guide for further research. Both qualitative and quantitative
techniques were used to obtain primary and secondary data for the research
and the TQM model framework was successfully used in a self assessment
case study of companies (A&B) in Libya. The survey was able to identify critical
barriers that were assessed in relation to other published data on inter-societal
and intra-organisational barriers so as to identity a number of barriers unique to
the Libyan case study. The overall results indicated that the case study
companies were in the early stages of TQM initiatives and that there were large
areas for improvement to overcome the barriers
TDP1/TOP1 ratio as a promising indicator for the response of small cell lung cancer to topotecan
BACKGROUND AND OBJECTIVE
Small cell lung cancer (SCLC) is one of the most challenging tumors to treat due to high proliferation rate, early metastatic dissemination and rapid development of chemotherapy resistance. The current treatment protocols involve the use of topoisomerase 1 (TOP1) poisons such as irinotecan and topotecan in combination with platinum-based compounds. TOP1 poisons kill cancer cells by trapping TOP1 on DNA, generating lethal DNA double-strand breaks. A potential mechanism employed by cancer cells to resist killing by TOP1 poisons is to overexpress enzymes involved in the repair of TOP1-DNA breaks. Tyrosyl DNA phosphodiesterase 1 (TDP1) is a key player in this process and despite its importance, no data is currently available to correlate TDP1 protein and mRNA levels with catalytic activity in SCLC. In addition, it is not known if TDP1 and TOP1 protein levels correlate with the cellular response of SCLC to TOP1 based therapies.
METHODS AND RESULTS
We report a remarkable variation in TDP1 and TOP1 protein levels in a panel of SCLC cell lines. TDP1 protein level correlates well with TDP1 mRNA and TDP1 catalytic activity, as measured by two newly developed independent activity assays, suggesting the potential utility of immunohistochemistry in assessing TDP1 levels in SCLC tissues. We further demonstrate that whilst TDP1 protein level alone does not correlate with topotecan sensitivity, TDP1/TOP1 ratio correlates well with sensitivity in 8 out of 10 cell lines examined.
CONCLUSION
This study provides the first cellular analyses of TDP1 and TOP1 in SCLC and suggests the potential utility of TDP1/TOP1 ratio to assess the response of SCLC to topotecan. The establishment and validation of an easy-to-use TDP1 enzymatic assay in cell extracts could be exploited as a diagnostic tool in the clinic. These findings may help in stratifying patients that are likely to benefit from TOP1 poisons and TDP1 inhibitors currently under development
APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks
Aprataxin and polynucleotide kinase (PNK) are DNA end processing factors that are recruited into the DNA single- and double-strand break repair machinery through phosphorylation-specific interactions with XRCC1 and XRCC4, respectively. These interactions are mediated through a divergent class of forkhead-associated (FHA) domain that binds to peptide sequences in XRCC1 and XRCC4 that are phosphorylated by casein kinase 2 (CK2). Here, we identify the product of the uncharacterized open reading frame C2orf13 as a novel member of this FHA domain family of proteins and we denote this protein APLF (aprataxin- and PNK-like factor). We show that APLF interacts with XRCC1 in vivo and in vitro in a manner that is stimulated by CK2. Yeast two-hybrid analyses suggest that APLF also interacts with the double-strand break repair proteins XRCC4 and XRCC5 (Ku86). We also show that endogenous and yellow fluorescent protein-tagged APLF accumulates at sites of H(2)O(2) or UVA laser-induced chromosomal DNA damage and that this is achieved through at least two mechanisms: one that requires the FHA domain-mediated interaction with XRCC1 and a second that is independent of XRCC1 but requires a novel type of zinc finger motif located at the C terminus of APLF. Finally, we demonstrate that APLF is phosphorylated in a DNA damage- and ATM-dependent manner and that the depletion of APLF from noncycling human SH-SY5Y neuroblastoma cells reduces rates of chromosomal DNA strand break repair following ionizing radiation. These data identify APLF as a novel component of the cellular response to DNA strand breaks in human cells
A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage
The molecular role of poly (ADP-ribose) polymerase-1 in DNA repair is unclear. Here, we show that the single-strand break repair protein XRCC1 is rapidly assembled into discrete nuclear foci after oxidative DNA damage at sites of poly (ADP-ribose) synthesis. Poly (ADP-ribose) synthesis peaks during a 10 min treatment with H2O2 and the appearance of XRCC1 foci peaks shortly afterwards. Both sites of poly (ADP-ribose) and XRCC1 foci decrease to background levels during subsequent incubation in drug-free medium, consistent with the rapidity of the single-strand break repair process. The formation of XRCC1 foci at sites of poly (ADP-ribose) was greatly reduced by mutation of the XRCC1 BRCT I domain that physically interacts with PARP-1. Moreover, we failed to detect XRCC1 foci in Adprt1Âż/Âż MEFs after treatment with H2O2. These data demonstrate that PARP-1 is required for the assembly or stability of XRCC1 nuclear foci after oxidative DNA damage and suggest that the formation of these foci is mediated via interaction with poly (ADP-ribose). These results support a model in which the rapid activation of PARP-1 at sites of DNA strand breakage facilitates DNA repair by recruiting the molecular scaffold protein, XRCC1
ATM deficiency results in accumulation of DNA-Topoisomerase I covalent intermediates in neural cells
Accumulation of peptide-linked DNA breaks contributes to neurodegeration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1) and human hereditary ataxia. TDP1 primarily operates at single-strand breaks (SSBs) created by oxidative stress or by collision of transcription machinery with topoisomerase I intermediates (Top1-CCs). Cellular and cell-free studies have shown that Top1 at stalled Top1-CCs is first degraded to a small peptide resulting in Top1-SSBs, which are the primary substrates for TDP1. Here we established an assay to directly compare Top1-SSBs and Top1-CCs. We subsequently employed this assay to reveal an increased steady state level of Top1-CCs in neural cells lacking Atm; the protein mutated in ataxia telangiectasia. Our data suggest that the accumulation of endogenous Top1-CCs in Atm-/- neural cells is primarily due to elevated levels of reactive oxygen species. Biochemical purification of Top1-CCs from neural cell extract and the use of Top1 poisons further confirmed a role for Atm during the formation/resolution of Top1-CCs. Finally, we report that global transcription is reduced in Atm-/- neural cells and fails to recover to normal levels following Top1-mediated DNA damage. Together, these data identify a distinct role for ATM during the formation/resolution of neural Top1-CCs and suggest that their accumulation contributes to the neuropathology of ataxia telangiectasia
Possible Z-Width Probe of a Brane-World Scenario for Neutrino Masses
The possibility that the accurately known value of the Z width might furnish information about the coupling of two neutrinos to the Majoron (Nambu-Goldstone boson of spontaneous lepton number violation) is proposed and investigated in detail. Both the ordinary case and the case in which one adopts a brane world picture with the Majoron free to travel in extra dimensions are studied. Bounds on the dimensionless coupling constants are obtained, allowing for any number of extra dimensions and any intrinsic mass scale. These bounds may be applied to a variety of different Majoron models. If a technically natural see-saw model is adopted, the predicted coupling constants are far below these upper bounds. In addition, for this natural model, the effect of extra dimensions is to decrease the predicted partial Z width, the increase due to many Kaluza-Klein excitations being compensated by the decrease of their common coupling constant
- …