32 research outputs found

    Core of the Magnetic Obstacle

    Full text link
    Rich recirculation patterns have been recently discovered in the electrically conducting flow subject to a local external magnetic termed "the magnetic obstacle" [Phys. Rev. Lett. 98 (2007), 144504]. This paper continues the study of magnetic obstacles and sheds new light on the core of the magnetic obstacle that develops between magnetic poles when the intensity of the external field is very large. A series of both 3D and 2D numerical simulations have been carried out, through which it is shown that the core of the magnetic obstacle is streamlined both by the upstream flow and by the induced cross stream electric currents, like a foreign insulated insertion placed inside the ordinary hydrodynamic flow. The closed streamlines of the mass flow resemble contour lines of electric potential, while closed streamlines of the electric current resemble contour lines of pressure. New recirculation patterns not reported before are found in the series of 2D simulations. These are composed of many (even number) vortices aligned along the spanwise line crossing the magnetic gap. The intensities of these vortices are shown to vanish toward to the center of the magnetic gap, confirming the general conclusion of 3D simulations that the core of the magnetic obstacle is frozen. The implications of these findings for the case of turbulent flow are discussed briefly.Comment: 14 pages, 9 figures, submitted to Journal of Turbulenc

    Analytic solutions to determine critical magnetic fields for thermoelectric magnetohydrodynamics in alloy solidification

    Get PDF
    During alloy solidification, it has been observed that the morphology of microstructures can be altered by applying an external DC magnetic field. This structural change can be attributed to solutal convective transport introduced by thermoelectric magnetohydrodynamics (TEMHD) which drives fluid motion within the inter-dendritic region. Complex numerical models with grid resolutions on the microscopic scale have been constructed to solve the equations governing TEMHD. To complement these computationally intensive numerical models, analytic solutions were sought. Specifically, the analytic solutions presented herein are asymptotic solutions derived for TEMHD under low and high magnetic field intensities. Combination of these asymptotic solutions leads to simple formulae for estimating critical magnetic fields which can be readily evaluated in terms of characteristic lengths of materials that have been identified in experiments as key parameters of critical fields. Indeed, the critical magnetic fields predicted with the asymptotic solutions exhibit magnitudes consistent with those applied in current ongoing experiments where significant changes in microstructure have been observed. The capability to predict accurate results indicates that the analytic solutions described herein are valuable precursors not only for detailed numerical simulations but also for experimental design to study critical magnetic fields in alloy solidification

    Edge effects in electromagnetic flowmeters

    No full text

    A numerical model coupling thermoelectricity, magnetohydrodynamics and dendritic growth

    No full text
    The purpose of this paper is to discuss in detail the numerical techniques used to investigate the effects of Thermoelectric Magnetohydrodynamics on dendrtic growth. A numerical model is proposed which couples the growth mechanics, solution to the electric potential, fluid mechanics and the transport of heat and mass. The implementation of the equations, solution techniques and the coupling between each of the various physical phenomena is described. A finite difference sharp interface enthalpy based method is used to solve the evolution of the liquid/solid front. The electric potential becomes the solution to Laplace’s equation, with a boundary condition applied to the interface and a sub meshing technique is applied to improve the accuracy. The problem is also inherently 3-dimensional and it can be shown analytically that classical 2-dimensional approximations lead to stagnation of the flow. Therefore a quasi 3-dimensional approximation is used which effectively allows simulations to be carried out in 2-dimensions, which significantly reduces the computational time required
    corecore