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Abstract

During alloy solidification, it has been observed that
the morphology of microstructures can be altered by
applying an external DC magnetic field. This struc-
tural change can be attributed to solutal convective
transport introduced by Thermoelectric Magnetohy-
drodynamics (TEMHD) which drives fluid motion
within the inter-dendritic region. Complex numerical
models with grid resolutions on the microscopic scale
have been constructed to solve the equations govern-
ing TEMHD. To complement these computationally
intensive numerical models, analytic solutions were
sought. Specifically, the analytic solutions presented
herein are asymptotic solutions derived for TEMHD
under low and high magnetic field intensities. Com-
bination of these asymptotic solutions leads to simple
formulae for estimating critical magnetic fields which
can be readily evaluated in terms of characteristic
lengths of materials that have been identified in ex-
periments as key parameters of critical fields. Indeed,
the critical magnetic fields predicted with the asymp-
totic solutions exhibit magnitudes consistent with
those applied in current ongoing experiments where
significant changes in microstructure have been ob-
served. The capability to predict accurate results
indicates that the analytic solutions described herein
are valuable precusors not only for detailed numer-
ical simulations but also for experimental design to
study critical magnetic fields in alloy solidification.

Introduction

The ability to control microstructural evolution of so-
lidifying alloys is of fundamental importance for mod-
ifying and tailoring material properties. Thermal
gradients and stirring are examples of controls cur-
rently used in industry for manufacturing alloys. The
introduction of magnetic fields into the solidifying
process offers another control for alloy production.

To increase knowledge of these controlling mecha-
nisms, numerical models have been constructed (for
example, Kao et al. [1–4]) to solve the equations gov-
erning the complex physical processes of solidification
under the influence of magnetic fields. These equa-
tions describe mass, energy and momentum transport
in the vicinity of the solid-liquid interface coupled
with the thermoelectrically-induced Lorentz forces.
In this paper, the author presents another approach
for solving these equations with the objective of de-
riving analytic solutions that can be readily evaluated
to provide useful previews of results prior to initiating
the time-consuming but necessary numerical simula-
tions for parametric studies on solidification under
the influence of magnetic fields.

Experiments [5, 6] and numerical models [7, 8] have
shown that forced convection can have a significant
impact on the microstructure evolution with effects
such as preferential growth, grain refinement and
macrosegregation all being observed and predicted.
Typically, fluid flow is introduced through traditional
electromagnetic stirring using an AC field. Any DC
field present will act as a damping mechanism. Un-
der certain thermal conditions, natural and inherent
thermoelectric currents can be generated as a result
of the Seebeck effect. When these currents interact
with an external DC magnetic field, a Lorentz force
is formed which becomes the driver of fluid motion.
This effect, known as Thermoelectric Magnetohydro-
dynamics (TEMHD), was first detailed by Shercliff
who demonstrated that processes with large ther-
mal gradients and a significant thermoelectric power,
could attain relatively high fluid velocities [9]. Sher-
cliff applied the TEMHD theory to several phenom-
ena related to nuclear fusion reactors [10, 11] and
showed, as an example, that under a moderate mag-
netic field strength, velocities of O(10cm/s) in liq-
uid Lithium could be achieved. Indeed recent ex-
periments [12] support Shercliff’s theoretical work on
TEMHD.
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TEMHD has gained recognition as a potential cost-
effective, low-energy, stirring mechanism. For exam-
ple, experiments with a moderate thermal gradient of
2.8K/cm and a thermoelectric power of 20µK/V have
demonstrated that a rare earth Neodymium mag-
net alone would be sufficient to achieve velocities of
O(33mm/s) in a conducting fluid without the need
for electromagnets [13, 14]. Furthermore, TEMHD
has been shown to impact natural convection [15].

The aforementioned references all investigated
TEMHD on the macroscopic scale. However, vari-
ations in surface temperature, such as the large ther-
mal gradients created during directional solidifica-
tion, can produce conditions for thermoelectric cur-
rents to form on the micro-meso scale. Accordingly,
the analytic model described in this paper and the
numerical model referenced for comparison of results
both address TEMHD in alloy solidification on the
micro-meso scale.

The use of TEMHD for controlling solidification
was first proposed and investigated in the 1990s [16–
18]. Those experiments showed that the application
of an external DC magnetic field to a solidifying alloy
had pronounced effects on the crystalline structure.
Also, the magnitude of the changes had a material
dependency which could be attributed to the varia-
tion in thermoelectric power of the various alloys ex-
amined. More recently, microstructural changes have
been observed over a wide range of magnetic field in-
tensities from low-moderate (O(1T)) field strengths
[19–22] to higher (O(10T)) strengths [23–25]. Fur-
thermore, direct in situ observations of solidification
under a relatively low magnetic field have shown in-
dications of TEMHD flow at the meso scale [26].

Experiments conducted to explore the impact of
magnetic field intensity on microstructures have also
identified the presence of a critical magnetic field
which occurs when the dominant opposing force
changes from viscous damping to electromagnetic
damping. During this transition, the conditions for
maximum flow velocity are produced resulting in
the largest microstructural change [19]. The ana-
lytic solutions for TEMHD described in this paper
would readily reveal the functional dependency and
the physical parameters for determining the critical
magnetic field. The significance of these parameters
is of particular interest for developing the capability
to predict the outcome of microstructural modifica-
tions which in turn will allow macroscopic material
properties to be tailored by selective design of the
applied magnetic field.

Thermoelectric magnetohydrodynamics

Thermoelectricity is essentially the conversion of
thermal energy into electrical energy, the fundamen-
tals of which are detailed in semi-conductor physics.
This section summarises the basic equations govern-
ing TEMHD and the assumptions made to simplify
these equations in order to derive analytic solutions.

Governing equations

In solidification, there are two necessary conditions
for thermoelectric currents to exist. The first is a
temperature variation on the liquid-solid interface
and the second is a difference in thermoelectric power
∆S across the liquid-solid interface. In directional
solidification, the former condition is immediately
satisfied by an externally imposed thermal gradient.
For the latter condition, the alloy components can
be chosen such that a significant ∆S exists between
the solid phase and the high concentration of locally
ejected solute at the interface.

The Seebeck effect can be quantified by generalis-
ing Ohm’s law with the inclusion of a thermoelectric
term S∇T

j

σ
= E− S∇T + u×B (1)

where j is the current density, σ is the electrical con-
ductivity, E is the electric field, S is the Seebeck co-
efficient, u is the flow velocity and B is the magnetic
field. The thermoelectric potential ΨT is defined as
ΨT (T ) =

∫
SdT which simply becomes ΨT = ST

for constant S. In terms of potentials, (1) can be
expressed as

j

σ
= −∇ (ΨE + ΨT ) + u×B = −∇Ψ + u×B. (2)

where Ψ is the combined potential of ΨT and the
electric potential ΨE . Taking the divergence of (2)
together with continuity of charge ∇ · j = 0 reduces
(2) to Poisson’s equation

∇2Ψ = ∇ · u×B. (3)

At the liquid-solid interface, the driving e.m.f is

∆Ψ =

∮
j

σ
· dl. (4)

Integrating around the interface between two loca-



tions with temperatures T1 and T2 gives

∆Ψ = Ψi
E −

T1∫
T2

Sl∇T · dl + (u×B)||

−Ψi
E +

T1∫
T2

Ss∇T · dl

=

T1∫
T2

(Sl − Ss) dT =

T1∫
T2

∆SdT + (u×B)|| . (5)

where (u×B)|| is parallel to the interface and the
subscripts l and s represent liquid and solid respec-
tively. With constant S assigned to both solid and
liquid, the potential difference simplifies to

∆Ψ = ∆ST + (u×B)|| (6)

In the presence of an external magnetic field, these
currents will interact to give a Lorentz force for fluid
motion. For time-invariant magnetic fields, this type
of MHD flow can be described by the classical Navier-
Stokes equation

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + j×B (7)

where the last term on the right hand side represents
the Lorentz force. Finally, continuity for incompress-
ible flow

∇ · u = 0 (8)

completes the set of equations governing TEMHD.

Assumptions

The key result presented in this paper is a set of ana-
lytic solutions describing dendritic growth under the
influence of an applied magnetic field in directional
solidification. Asymptotic solutions are derived ap-
plicable for low magnetic fields denoted by B0, for
B → 0, as well as high magnetic fields denoted by
B∞, for B→∞. For clarity, this section summarises
the assumptions made in order to derive the analytic
solutions.

The first assumption made is a low Seebeck power
∆S ∼ 0 which, irrespective of the magnitude the
of magnetic field, will produce a low driving force,
hence low velocities implying low Reynolds numbers
Re. Note that a low Re is also consistent with the
typical dimensions of microstructures. The second

assumption made is that the time-scale for transport
of heat and mass is much smaller than the accelera-
tion time of the fluid flow which, for advective trans-
port, is automatically satisfied by the low Re. For
diffusion, the second assumption becomes valid when
the crystals are in a quasi thermodynamic equilib-
rium state. Based on these two assumptions, the
temporal and convective acceleration terms in the
Navier-Stokes equation (7) can be removed to give
the steady-state equation

−∇p+ µ∇2u + j×B = 0. (9)

Let

j×B = J×B + σu×B×B (10)

where the Lorentz force is expressed as the sum of the
driving thermoelectric force and the electromagnetic
damping force. For a low magnetic field, B→ 0, thus
u×B → 0 and for a high magnetic field, it can be
assumed that∣∣µ∇2u

∣∣ << |J×B| ∼ |σu×B×B| (11)

giving

|u| ∝ ∆S

|B|
(12)

which leads to the result

|u×B| ∝ ∆S ∼ 0. (13)

The simplifications based on the above assumptions
for both low and high magnetic fields show that the
term u×B in (6) can be removed giving

∆Ψ = ∆ST. (14)

For a low magnetic field B0, the electromagnetic
damping force vanishes while the viscous damping
force dominates. (9) then becomes

−∇p+ µ∇2u + J×B0 = 0. (15)

For a high magnetic field B∞, the electromagnetic
damping term

u×B∞ ×B∞ ∝ S∇T ×B∞

is significant but viscous damping is negligible. In
this case, (9) becomes

−∇p+ J×B∞ + σu×B∞ ×B∞ = 0. (16)

In the subsequent analysis for analytic solutions,
reference to low magnetic fields B0 implies signifi-
cant viscous damping with negligible electromagnetic
damping. Likewise, high magnetic fields B∞ are syn-
onymous with significant electromagnetic damping
and negligible viscous damping.



Steady State Analysis Under Directional
Solidification

During directional solidification, the external thermal
conditions are controlled by two furnaces operating at
different temperatures which create a thermal gradi-
ent along the direction of solidification ẑ. The applied
temperature gradient causes dendritic growth to take
on a columnar structure. For the purpose of ana-
lytic derivations, it can be assumed that the external
thermal conditions will dominate over any localised
surface energy effects and that heat loss normal to
the applied thermal gradient will be negligible. Un-
der these conditions, the temperature gradient will
be constant throughout the system and the potential
difference at the solid-liquid interface becomes

∆Ψ = ∆S
dT

dz
z. (17)

Figure 1 shows results from a numerical simula-
tion depicting an example of the typical columnar
structure of dendritic growth during directional so-
lidification. The accompanying solution for the ther-
moelectric current J, also shown in this figure, illus-
trates that current passes inside the dendrite before
emanating near the tip, then through the liquid and
continues across the lower boundary at the base of
the dendrite.

The main objective of this paper is to determine
critical magnetic fields for transverse and parallel
field orientations in directional solidification. The
common form for the critical magnetic field, as de-
rived from MHD duct flow, is given by

Bc =
1

W

(µ
σ

) 1
2

(18)

where the characteristic length W is half of the duct
width. The simplistic form of (18) comprising only a
single characteristic length lacks the definition for ac-
curate estimation of critical fields as there are many
lengths scales in solidification ranging over several
orders of magnitude from the radius of a dendrite
tip W ∼ 10−6m to the length of the material itself
W > 10−3m. This paper addresses the variety of
length scales by determining analytic solutions that
include characteristic lengths of materials which are
known from experiments to be key parameters of crit-
ical magnetic fields. Specifically, these characteristic
lengths are the primary tip radius r0, half of the pri-
mary arm spacing Wp, half of the secondary arm ra-
dius Wr and half of the grain spacing Ws.

The analytic solutions presented in this paper pro-
vide formulae for critical magnetic fields based on two

definitions. The first denoted by Bc defines the mag-
netic field that produces the maximum velocity and
the second denoted by Bcfr defines the magnetic field
that maximises the flow rate. The selection of defi-
nition for critical fields is application dependent. For
example, the formerBc may be easier to detect exper-
imentally for validation while the latter Bcfr is more
closely linked to convective transport and therefore
directly related to morphological changes. The gen-
eral formulae for critical magnetic fields derived from
the analytic solutions are applicable for a wide range
of alloys. As an illustration for industrial applica-
tions, the numerical and analytic results described in
the following analyses have been scaled to represent
an aluminium-based alloy with material properties of
µ = 1.3× 10−3Pas and σ = 3.78× 107S/m.

Transverse magnetic field

This section details the derivation of analytic solu-
tions for directional solidification in the presence of
an external transverse magnetic field. Near the base
of the crystal, as illustrated in figure 1, J will have a
dominant component Jz. For the purpose of deriving
analytic solutions, the other vector components of J
can be ignored based on the following analogue.

Consider an infinite array of infinitely long uni-
form wires aligned parallel to the thermal gradient
with alternating Seebeck coefficients. Because of the
constant external thermal gradient, the thermoelec-
tric field S∇T within each wire will remain constant
and with no variations in the geometry of the wires,
the electric field −∇ΨE will also be constant. Con-
sequently, the current density within each wire will
be constant but in opposite directions. This analogue
represents a cross-section through the dendritic array
with alternating wires representing solid and liquid.
Physically, the analogue can be applied within the
inter-dendritic region away from the tips where the
dendrites are closely packed. In this region, the re-
sulting force under a By magnetic field will only have
a single component in the x̂ direction.

Figure 2 shows the results of a numerical simu-
lation depicting the flow pattern around dendrites
under a moderate magnetic field. These results show
inter-dendritic flow passing between the crystals with
twin circulations forming around each tip. Assum-
ing that these twin vortices do not influence flow at
the base of the dendrite, this infinite array of den-
drites can be viewed as a series of alternate expanding
and contracting ducts. Figure 3 shows a schematic
cross-section of these ducts. For brevity, the nar-



Figure 1: J for directional solidification

Figure 2: Example representation of the flow near the base of the crystal under a transverse field.

Figure 3: Representation of infinite series of pipe expansion and contractions.



rower region between two secondary branches of dif-
ferent dendrites will be referred to as the secondary
duct and the wider region between the primary arms,
the primary duct. In order to derive analytic solu-
tions for flow within both the primary and secondary
ducts, the flow at the centre of each duct is assumed
to be fully developed. Also, laminar flow within the
ducts is implied as a result of low Re. The various
lengths and nomenclature used in the following anal-
ysis are also shown in figure 3 where u1, p1 are the
velocity and pressure in the centre of the secondary
duct x1 and u2, p2 are the velocity and pressure in
the centre of the primary duct x2.

For a low magnetic field B0, the Navier-Stokes
equation can be expressed as

−JzB0 + µ
∂2u

∂y2
− ∂p

∂x
= 0 (19)

with boundary conditions for the secondary duct

u1|y=Ws
= 0, (20)

∂u1
∂y

∣∣∣∣
y=0

= 0, (21)

∂

∂y

∂p1
∂x

∣∣∣∣
y=0

= 0 (22)

and for the primary duct

u2|y=Wp
= uw, (23)

∂u2
∂y

∣∣∣∣
y=0

= 0, (24)

∂u2
∂y

∣∣∣∣
y=Wp

= 0, (25)

∂

∂y

∂p2
∂x

∣∣∣∣
y=0

= 0, (26)

∂

∂y

∂p2
∂x

∣∣∣∣
y=Wp

= 0 (27)

where uw is the velocity at the primary duct bound-
aries. For each duct, the lowest order solutions for
the velocity and pressure gradient that satisfy the
number of critcal points imposed by the boundary
conditions can be expressed as

u1 = A0 +A2y
2, (28)

∂p1
∂x

= C0, (29)

u2 = D0 +D2y
2 +D4y

4 +D6y
6, (30)

∂p2
∂x

= E0 + E2y
2 + E4y

4 (31)

where flow in the secondary duct is characterised by
Pouseuille flow. By applying mass conservation to-
gether with an assumed linear pressure trend at x1
and x2, the coefficients in the above equations can
be solved analytically. Full derivation of all the co-
efficients is described in the Appendix. The salient
ones, which represent fluid flow along the centre of
the ducts, are shown below.

A0 =
1

2µW0

(
−16JzB0W

3
p

+ 147µuw (Wp −Wr))WpW
2
s , (32)

C0 =
1

W0

(
JzB0

(
16W 3

p − 49W 3
s

)
− 147µuwWp) (Wp −Wr) , (33)

D0 = − 1

2µW0

(
21JzB0W

3
sW

3
p+

µuw
(
31W 3

pWr − 98WpW
3
s + 98WrW

3
s

))
, (34)

E0 =
1

W0

(
JzB0

(
−16W 3

p + 49W 3
s

)
+ 147µuwWp)Wr, (35)

W0 = 49W 3
s (Wp −Wr) + 16W 3

pWr. (36)

The above results for low magnetic fields show that
the velocity increases with increasing By. In general,
the velocity at the primary duct boundaries uw is un-
known but |uw| << D0 is a reasonable approxima-
tion. Therefore, in the subsequent analysis, uw = 0
has been assumed.

For a high magnetic field B∞, as characterised by
a high Hartmann number, the viscous boundary layer
becomes thin resulting in negligible viscous damping
along the duct centres. Under these conditions, the
Navier-Stokes equation simplifies to

−JzB∞ − σuB2
∞ −

∂p

∂x
= 0 (37)

which can be solved as

u1 = −
JzW

2
p

σB∞W∞
, (38)

u2 = − JzWpWs

σB∞W∞
, (39)

∂p1
∂x

=
JzB∞ (Wr −Wp) (Wp −Ws)

W∞
, (40)

∂p2
∂x

= −JzB∞Wr (Wp −Ws)

W∞
, (41)

W∞ = Wr (Wp −Ws) +WpWs. (42)

The above results for high magnetic fields show that
the velocity decreases with increasing By.



In both ducts, the low field solution represents
viscous damped flow while the high field solution
represents Hartmann flow. For comparison between
the analytic and numerical methods, a section at
the base of the dendrite was selected with the fol-
lowing lengths Wp = 18.0µm, Ws = 4.6µm and
Wr = 3.4µm. The relatively small primary arm spac-
ing of 36.0µm between each dendrite was chosen so
that a sufficiently fine 3-dimensional grid containing
some 12 million cells discretised with constant dimen-
sions of 0.25µm would cover the entire domain for
numerical computations.

Figure 4 shows the results from the analytic and
numerical solutions for a case with a low magnetic
field strength of By = 10−7T. Comparison of results
in this figure indicates a more accurate match for the
primary duct than for the secondary duct. The larger
discrepancy of the latter can be attributed to the fol-
lowing effects. Firstly, as might be expected of the
relatively short duct length, the numerical flow pro-
file is not parabolic nor fully developed. Secondly,
a pressure gradient along the direction of solidifi-
cation will be created by the tapering geometry of
the secondary duct. This geometric effect produces
additional perturbations in the conservation equa-
tions for momentum and mass which were excluded
in the derivation of the analytic solutions. Neverthe-
less, the analytic solution for the secondary duct still
matches the numerical results near the duct bound-
aries. Figure 5 shows the analytic and numerical re-
sults for a case with a high magnetic field strength
of By = 10T. Notice that Hartmann flow is clearly
evident in both ducts with the analytic solution rep-
resenting idealised Hartmann flow. Figure 6 shows
pressure variations within the primary and secondary
ducts for the cases with low and high magnetic field
strengths. The periodic pressure condition from (98),
also shown in this figure, is in excellent agreement
with the numerical solutions particularly at x1 and
x2.

The analytic solutions for the cases of low and
high magnetic fields where respectively electromag-
netic damping and viscous damping have been ne-
glected show that as By increases, the low magnetic
field velocity increases linearly with By while the high
magnetic field velocity decreases as the inverse of By.
Combination of these two asymptotic solutions will
form the envelope within which the numerical so-
lution, which includes electromagnetic and viscous
damping, would lie. This envelope indicates the pres-
ence of a critical magnetic field Bc where transition
from viscous damped to Hartmann flow occurs within

the secondary and primary ducts. This critical mag-
netic field can be defined as the field strength that
gives a maximum velocity which occurs when

∂u

∂B

∣∣∣∣
By=Bc

= 0. (43)

For each duct, the critical magnetic field can be de-
termined by equating the low and high magnetic field
solutions at x1 and x2 and solving for By. The follow-
ing are the solutions for the critical magnetic fields
in the secondary and primary ducts.

Bc|x1
=

1

WpWs

(
µW0

8σW∞

) 1
2

, (44)

Bc|x2
=

1

WpWs

(
2µW0

21σW∞

) 1
2

(45)

where

Bc|x1
> Bc|x2

. (46)

Figure 7 shows the numerical results for the velocity
at the centre of both ducts over the range of mag-
netic fields simulated. Also shown in this figure are
the low and high field asymptotic solutions, the in-
tersection of which determines the critical fields as
given in (44) and (45). Note that the strengths of
the critical field predicted analytically are in reason-
able agreement with the numerical results.

For convective transport, the critical magnetic field
Bcfr creates the highest flow rate in both ducts.
There are four flow rates, two for each duct with low
and high magnetic fields. Applying continuity,∫ y=Ws

y=0

u1(B0)dy =

∫ y=Wp

y=0

u2(B0)dy

=

∫ y=Ws

y=0

u1(B∞)dy =

∫ y=Wp

y=0

u2(B∞)dy, (47)

from which any combination of low and high field so-
lutions can be used to calculate the critical magnetic
field Bcfr. The flow rates for the low field solution
in the secondary duct and the high field solution in
the primary duct are given respectively by

u1fr =

∫ y=Ws

y=0

u1dy = −16

3

JzB0W
4
pW

3
s

µW0

= F0B0, (48)

u2fr =

∫ y=Wp

y=0

u2dy =
−JzW 2

pWs

σB∞W∞
=
F∞
B∞

. (49)



Figure 4: x-velocity profile under a low magnetic field. Left: Secondary duct. Right: Primary duct.

Figure 5: x-velocity profile under a high magnetic field. Left: Secondary duct. Right: Primary duct.

Figure 6: Pressure along the centre of the two ducts. Left: Low magnetic field. Right: High magnetic field.

Figure 7: Comparison of asymptotic solutions for u1 and u2 against numerical simulations. The right figure
is focused around the predicted critical magnetic fields



Equating (48) to (49) and setting Bcfr = B0 = B∞,
the critical field can be solved as

Bcfr =
1

WpWs

(
3µW0

16σW∞

) 1
2

. (50)

Figure 8 shows the resulting asymptotic solutions for
low and high magnetic fields together with the crit-
ical magnetic field where these solutions intersect.
Note the successful match of the critical magnetic
field Bcfr to the numerical results.

The simple forms of the asymptotic solutions for
the flow rates (48) and (49) suggest that the low and
high field solutions can be linked into a single analytic
function ufr(B) for all magnetic field strengths B.
Indeed, the following linkage of the low and high field
asymptotic solutions

ufr = (
1

F0B
+

B

F∞
)−1, (51)

also shown in figure 8, improves the match of the
analytic solution to the numerical solution for ufr
by a factor of 2 when compared to using (48) and
(49) in isolation. More importantly, the maximum of
(51), which defines the critical magnetic field, occurs
at the same value as the intersection of the low and
high field asymptotic solutions given by (50)

The above derivation of (50) shows that the crit-
ical magnetic field depends on several length scales.
Dimensional analysis with

W0 →W 4
Ha, (52)

W∞ →W 2
Ha, (53)

Wp ∼Ws ∼Wr →WHa (54)

simplifies (50) to

Bc|x1,x2,fr
=
O (1)

WHa

(µ
σ

) 1
2

(55)

where WHa represents a modified Hartmann layer or
characteristic length analogous to W in (18). For
application in conventional castings where a uniform
temperature gradient can be generated as molten al-
loy is cooled at one end of a cast, the early stages
of solidification can be described by (55) with Ws ∼
Wp >> Wr which gives

Bc|x1,x2,fr
∝ 1

Wp

(µ
σ

) 1
2

. (56)

Note that in (56), the critical magnetic fields de-
pends on the primary arm spacing Wp but during

later stages of solidification, when Ws ∼Wr << Wp,
the critical magnetic fields become

Bc|x1,x2,fr
∝ 1

Ws

(µ
σ

) 1
2

(57)

and depend only on the grain spacing Ws.
The effects of TEMHD for low magnetic fields will

be greatest close to the tips but for high magnetic
fields, the largest influence will occur deep within
the inter-dendritic network. For practical applica-
tions, the analytic solution can be useful for deter-
mining the required operational strength of the ap-
plied magnetic field by simply estimating the charac-
teristic length scales of the regions targeted for ma-
terial changes. As an illustration of the application
of the analytic solution, evaluating (50) with typical
material properties and dimensions of µ = 10−3Pas,
σ = 107S/m, Wp = 200µm, Wr = 5µm and 10 <
Ws > 100µm gives a Bcfr ranging from 0.15 - 1.02T.
In the limit when grain boundaries become very thin,
for example Ws < 1µm, the required critical field
could exceed 10T.

Parallel magnetic field

Consider the same system as described in the pre-
vious section but now the external magnetic field is
aligned to the direction of dendritic growth. At the
base of the crystal, J will predominantly be paral-
lel to the direction of the magnetic field, hence the
resulting Lorentz force will be neglible. However, at
the tip of the crystal, J will have components tangen-
tial to the magnetic field with a significant Lorentz
force generated. In the following analysis, the gov-
erning equations are re-cast in cylindrical polar co-
ordinates (r, θ, z) and the derivation of analytic so-
lutions is conducted in the plane that intersects the
dendrite tip radius r0 where the Lorentz force and
velocity are significant. At this location, the system
is approximately axisymmetric, hence

∂f

∂θ
= 0 (58)

where f represents all spatially dependent variables.
For current density, this approximation gives

Jθ =
1

r

∂Ψ

∂θ
= 0. (59)

Physically, Jr will decrease away from the dendrite
interface or with increasing r. Examination of nu-
merical simulation results describing this behaviour



Figure 8: Comparison of asymptotic solutions for ufr against numerical simulations.

concluded that Jr can be approximated by a power
law in the form of

Jr = J0
(
rn−2 −Wn−2

p

)
(60)

such that Jr decays to zero at the periodic boundary
r = Wp with continuity of J preserved. The coeffi-
cient J0 in (60) is proportional to the thermoelectric
field and the exponent n determines the decay of Jr
as r → Wp. n is predominantly dependent on the
dendritic morphology and for most practical applica-
tion, lies between 1 and 0. A value of unity represents
the analogous solution for an array of infinitely long
wires. For n = 0, Jr ∝ 1/r2, which is the general so-
lution of Laplace’s equation to the first harmonic on
a sphere (P 1

0 mode) and in this context, represents a
hemispherical crystal.

In addition to the assumption of axisymmetry, it
can be assumed that∣∣∣∣∂f∂r

∣∣∣∣ >> ∣∣∣∣∂f∂z
∣∣∣∣ ≈ 0, (61)

or no dependencies on ẑ. As shown in the Appendix,
application of continuity together with Jθ = 0 in-
voked will then result in no radial forces, hence no
radial velocity ur which leaves the angular velocity
uθ, dependent only on r, as the dominant variable.
Consequently, the Navier-Stokes equation becomes 1-
dimensional in r.

For a low magnetic field B0, the Navier-Stokes

equation is

µ

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

)
− J0B0

(
rn−2 −Wn−2

p

)
= 0. (62)

The particular solution of (62) takes the form of

uθ = A1r +A2r
−1 +A3r

n +A4r
2 (63)

where, on the right hand side, the third term ac-
counts for the Lorentz force and the last term ensures
Jr|r=Wp

= 0 is satisfied. Substituting (63) into (62)
together with the following boundary conditions

uθ|r=r0 = 0, (64)

uθ|r=Wp
= 0 (65)



gives

A1 =
J0B0

3µ (n2 − 1)
(
W 2
p − r20

) (3rn+1
0

−
(
n2 − 1

)
r30W

n−2
p +

(
n2 − 4

)
Wn+1
p

)
=
J0B0

µ
C1, (66)

A2 =
J0B0

3µ (n2 − 1)
(
W 2
p − r20

)r0 (−3rn0W
2
p

+
(
n2 − 1

)
r20W

n
p − r0

(
n2 − 4

)
Wn+1
p

)
=
J0B0

µ
C2, (67)

A3 =
J0B0

µ

1

(n2 − 1)
=
J0B0

µ
C3, (68)

A4 = −J0B0

µ

Wn−2
p

3
=
J0B0

µ
C4. (69)

Note that as |n| → 1, application of L’Hôpital’s rule
shows that the above coefficients remain finite.

Under a high magnetic field B∞, the Navier-Stokes
equation becomes

−JrB∞ − σuθB2
∞ = 0 (70)

and substituting Jr from (60) gives

uθ = −
J0
(
rn−2 −Wn−2

p

)
σB∞

. (71)

A full derivation of the low and high parallel magnetic
field solutions can be found in the Appendix.

The periodic boundaries for the numerical model
constructed with a Cartesian grid represent cubic
packing of the dendritic array but the derivation of
analytic solutions was based on the assumption of ax-
isymmetry. To asses the validity of this assumption,
the following analyses compare analytic and numer-
ical solutions determined along on-axis (x = x) as
well as off-axis (x = y) sections. For off-axis compar-
isons, the analytic results were calculated with Wp in-
creased by a factor of

√
2 to account for the increased

distance between diagonal dendrite neighbours.
For a consistent comparison between results deter-

mined by the analytic and numerical solutions, the
radial current density Jr as given by (60) was first
fitted to the numerical results by adjusting n. Figure
9 shows the least-squares fit for a particular array
of dendrites with Wp = 18.0µm which was achieved
using n = 0.96 on-axis and n = 0.98 off-axis. As
Wp → ∞, least-squares fit of the numerical results
gave n = 0.64 on-axis and n = 0.72 off-axis. These

values of n lying between 0 and 1 simply reflect the
dendrite morphology which is a combination of the
columnar structure (n = 1) and hemispherical tip
(n = 0).

The on-axis and off-axis flow profiles from the an-
alytic and numerical solutions with Wp = 18.0µm
are shown in figure 10. In the case of low magnetic
field (Bz = 10−7T), both the analytic and numerical
solutions exhibit similar characteristics although the
on-axis analytic solution is in better agreement with
the numerical results than the off-axis solution. In
contrast, the results of the high magnetic field case
(Bz = 10T) for both on-axis and off-axis show no dis-
cernible differences between the analytic and numer-
ical solutions except for decreasing radius r < 4µm
where the analytic solutions diverge from the numer-
ical solutions. This divergence was expected as vis-
cous damping, which was neglected in the derivation
of the analytic solutions, becomes significant.

The disparity in the match accuracy of the ana-
lytic solutions between the low and high magnetic
field cases shown in figure 10 can be traced to the as-
sumption of axisymmetry. Figure 11 shows contour
plots of velocities on the tip plane extracted from the
numerical results for the low and high magnetic field
cases. In the high field case, axisymmetry is clearly
evident whereas in the low field case, the flow pattern
is affected by neighbouring dendrites. Nevertheless,
the core results for the latter becomes axisymmetic
for decreasing r indicating that axisymmetry remains
a valid assumption for deriving analytic solutions.

The critical magnetic field is defined as before by

∂uθ
∂Bz

∣∣∣∣
Bz=Bc

= 0. (72)

By applying the same procedure as described pre-
viously of equating the low magnetic field and high
magnetic field solutions, the critical magnetic field
can be solved as

Bc =

(
µα1

σrα2 + r0W 2
pα3 + r2α4

) 1
2

(73)



Figure 9: Numerical and analytic fits for the radial component of J along the axis and off axis

Figure 10: uθ flow profile. Left: Low magnetic field. Right: High magnetic field.

Figure 11: Velocity contours. Left: Low magnetic field. Right: High magnetic field.



where

α1 = 3
(
n2 − 1

) (
r20 −W 2

p

) (
rnW 2

p − r2Wn
p

)
,

α2 =
(
n2 − 1

)
r3Wn

p

(
r20 −W 2

p

)
− 3rn+1W 2

p

(
r20 −W 2

p

)
,

α3 = −3rn0W
2
p +

(
n2 − 1

)
r20W

n
p

−
(
n2 − 4

)
r0W

n+1
p ,

α4 = 3rn+1
0 W 2

p −
(
n2 − 1

)
r30W

n
p

+
(
n2 − 4

)
Wn+3
p .

The critical velocity uθc is defined as the velocity as-
sociated with the critical magnetic field at a given
radius and can be solved by substituting Bc into ei-
ther the high or low magnetic field solution. Using
the high magnetic field solution gives

uθc = −
J0
(
rn−2 −Wn−2

p

)
σBc

. (74)

The critical radius rc is defined as the radius where
the critical velocity reaches its maximum or where

∂uθc
∂r

∣∣∣∣
r=rc

= 0 (75)

which leads to

Q5r
5
c +Q4r

4
c +Qn+3r

n+3
c +Qn+2r

n+2
c

+Q2n+1r
2n+1
c +Q2r

2
c +Qnr

n
c = 0 (76)

where

Q5 = 2
(
n2 − 1

)
W 2n
p

(
r20W

2
p

)
,

Q4 = Wn
p

(
3rn+1

0 W 2
p −

(
n2 − 1

)
r30W

n
p

+
(
n2 − 4

)
Wn+3
p

)
,

Qn+3 =
(
n3 + 2n

)
Wn+2
p

(
W 2
p − r20

)
,

Qn+2 = − (n− 1)W 2
p

(
3rn+1

0 W 2
p

−
(
n2 − 1

)
r30W

n
p +

(
n2 − 4

)
Wn+3
p

)
,

Q2n+1 = 6 (n− 1)W 4
p

(
r20 −W 2

p

)
,

Q2 = −r0Wn+2
p

(
−3rn0W

2
p

+
(
n2 − 1

)
r20W

n
p −

(
n2 − 4

)
r0W

n+1
p

)
,

Qn = − (n− 3) r0W
4
p

(
−3rn0W

2
p

+
(
n2 − 1

)
r20W

n
p −

(
n2 − 4

)
r0W

n+1
p

)
.

A general explicit solution of (76) for rc is not im-
mediately evident but rc can be determined numeri-
cally, for example, by Newton-Raphson. As an illus-
tration, a system with Bcx = 2.8T and Bcxy = 3.4T

is shown in figure 12 where the results for uθc ex-
tracted from numerical simulation of (74) are com-
pared with the asymptotic solutions for the low and
high magnetic field cases. The values of rcx = 2.4µm
and rcxy = 2.6µm determined at the intersection of
the asymptotic solutions from (76) under-estimates
the simulation results indicating that the deviation of
the analytic rc(Bc) from the numerical simulation is
influenced more by the low field asymptotic solution
than the high field solution. The low field solution
also impacts the on-axis and off-axis results. Fig-
ure 13, which plots contours of velocity in the (r,B)
plane, illustrates that the mismatch of the on-axis
and off-axis contours become more pronounced when
the decreasing magnetic field strength is coupled with
increasing radius from the tip. This figure is simply
an enhanced presentation of the observations regard-
ing the assumption of axisymmetry discussed earlier
and illustrated in figure 11.

For convective transport, the flow rates for both
the low and high field solution can be derived by in-
tegrating uθ between the tip radius and the primary
arm spacing. The asymptotic flow rate solutions uθfr
for the low and high magnetic fields are

uθfr(B0) =

∫ r=Wp

r=r0

uθdr

=
J0B0

µ

(
C1

2

(
W 2
p − r20

)
+ C2 (lnWp − ln r0)

+
C3

n+ 1

(
Wn+1
p − rn+1

0

)
+
C4

3

(
W 3
p − r30

))
, (77)

uθfr(B∞) =

∫ r=Wp

r=r0

uθdr

= − J0
σB∞

((
Wn−1
p − rn−10

)
/ (n− 1)

+ r0W
n−2
p −Wn−1

p

)
. (78)

Equating (77) to (78) and setting Bcfr = B0 = B∞,
the critical flow rate field can be expressed as

Bcfr =

(
− µα1

σ (α2 + α3)

) 1
2

(79)



Figure 12: Asymptotic solutions, critical velocity uθc and numerical solution as a function of radius. Left:
On-axis solutions with rc(Bc = 3.4T) = 2.4µm. Right: On-axis solutions with rc(Bc = 2.8T) = 2.6µm.

Figure 13: Contours of velocity for the on axis and off axis numerical solutions with analytic and numerical
values of uc posted.



where

α1 =
Wn−1
p − rn−10

n− 1
+ r0W

n−2
p −Wn−1

p ,

α2 =
C1

2

(
W 2
p − r20

)
+ C2 (lnWp − ln r0) ,

α3 =
C3

n+ 1

(
Wn+1
p − rn+1

0

)
+
C4

3

(
W 3
p − r30

)
.

Figure 14 illustrates the critical flow rate correspond-
ing to magnetic field Bcfr predicted by (79) in con-
text with the numerical solutions for determining the
maximum flow rate both on-axis and off-axis. Also
shown in this figure are the continuous functions
uθfr(B) which link the low and high field asymp-
totic solutions on-axis and off-axis. The linkage has
the same form as that for the transverse magnetic
fields (51) but with the coefficients of F0 and F∞ re-
placed with those of B0 and B−1∞ in (77) and (78)
for parallel fields. The results in figure 14 shows that
(79) is an excellent predictor for the critical magnetic
field as the on-axis and off-axis results for Bcfr, 1.8T
and 1.3T, calculated using (79) are comparable to the
simulation results of Bcfr = 1.4T and Bcfr = 1.1T.

The following analyses address the impact of n, Wp

and r0 on the critical magnetic field by examining the
functional dependence of Bcfr as given by (79). The
material property ratio µ/σ determines the relative
magnitude of the critical magnetic field and is inde-
pendent of n, Wp and r0. Therefore, Bcfr is scaled

by (µ/σ)
1
2 .

Figure 15 shows contours of Bcfr(Wp, r0) calcu-
lated from (79) for values of n = 0 and n = 0.96
which essentially cover the range of dendrite mor-
phologies expected in most industrial applications.
The Bcfr surfaces shown in this figure exhibit simi-
lar characteristics for both values of n indicating that
Bcfr is not strongly dependent on n apart from lower
values of r0 < 25µm. Cross sections of Bcfr, as il-
lustrated by the ones along Wp = 200µm shown in
figure 16, confirm the weak dependence of Bcfr over
the range of n considered. The dependency of Bcfr
on r0 as illustrated in figures 15 and 16 shows the
increase of Bcfr from a low trough as r0 approaches
both its limits of 0 and Wp is a direct consequence of
the characteristic length being dependent either on
r0 for small tips or on the difference Wp − r0. In the
case of r0 ∼Wp, a cellular-like structure without any
dendritic network will be formed as is often seen in
low concentration slow solidifications.

In a manner similar to the dependency on tip ra-
dius, the dependency of the critical magnetic field
on Wp is next analysed by examining cross-sections

along r0 of the Bcfr(Wp, r0) surfaces shown in figure
15. Figure 17, which displays cross-sections along
r0 = 10µm, not only confirms the weak dependency
on n but also shows the decreasing trend of Bcfr to
zero as Wp →∞.

The analytic solution for the critical magnetic field
as Wp →∞ is of particular interest for industrial ap-
plications as it can represent, for example, a single
crystal emerging from the grain selector during the
casting of turbine blades. Wp would represent the
distance of the dendrite to the walls of the cast where
the thermal and solute boundary layers can be as-
sumed to be much smaller than Wp with r0 << Wp.
By maximising the velocity instead of flow rate, a
critical magnetic field for this system can be deter-
mined dependent primarily on the tip radius r0 and
the exponent n characterising the decay of the ther-
moelectric current Jr away from the dendrite inter-
face as shown in the following analysis.

As Wp → ∞, the low field solution for uθ (63)
becomes

uθ =
J0B0

(n2 − 1)µ

(
rn+1 − rn+1

0

r

)
(80)

and likewise the high field solution (71) becomes

uθ = −J0r
n−2

σB∞
. (81)

Equating (80) to (81) and setting Bc = B0 = B∞,
the critical field can be solved as

Bc =

(
µ
(
1− n2

)
σ
(
r2c − r1−nc rn+1

0

)) 1
2

(82)

which on re-substituting into the high field solution
(81) gives

uθ =
−J0rn−2c

σ

(
µ(n2−1)rnc
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0 −rn+2

c )

) 1
2

. (83)

The maximum velocity occurs when

∂uθ
∂rc

= −µJ0r
2n
c (α1 − α2)

σ2r4cα3α4
= 0 (84)
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Figure 14: Flow rates from a parallel magnetic field for with indications of Bcfr. Left: On-axis solution.
Right: Off-axis solution.

Figure 15: Contour plots of Bcfr (Wp, r0). Left: n = 0. Right: n = 0.96

Figure 16: The functional dependence of r0 on Bcfr with Wp = 200µm



Figure 17: The functional dependence of Wp on Bcfr with r0 = 10µm

which can be solved to give

rc =

(
n− 3

2n− 2

) 1
n+1

r0. (85)

Substituting (85) into (82) gives Bc as

Bc =
1

r0

(
µ
(
1− n2

)
σ (λ2 − λ1−n)

) 1
2

(86)

where

λ =

(
n− 3

2n− 2

) 1
n+1

.

For typical values of tip radius r0 = 10µm and n =
2/3 together with material properties µ = 10−3Pas
and σ = 107S/m for an aluminium-based alloy, (86)
gives a critical field strength of around 0.7T which is
within the range of permanent rare earth magnets.

Conclusion

The effects of an externally applied magnetic field on
microscopic Thermoelectric Magnetohydroydnamics
(TEMHD) during directional solidification have been
explored. Analytic solutions for TEMHD with both
transverse and parallel magnetic fields have been de-
rived in the form of asymptotic solutions for low and
high magnetic field intensities. By maximising the
velocity and flow rate, critical magnetic fields can
be determined for various solidification conditions.

The magnetic field intensities predicted analytically
compare well with the results computed in numerical
simulations with magnitudes of field intensity con-
sistent with those applied in current on-going experi-
ments where significant microstructural changes have
been observed. The analytic solutions show that the
critical magnetic field is highly dependent on a com-
bination of characteristic lengths of materials which
include the tip radius, primary arm spacing, grain
spacing and dendrite arm radius. These analytic so-
lutions provide useful formulae that can be readily
evaulated for prelimary results on critical magnetic
fields in support of detailed numerical simulations as
well as experimental design.
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Appendix

Derivation of Transverse Magnetic Field Solutions

Under a transverse field, the thermoelectric force is

J×B =

∣∣∣∣∣∣
x̂ ŷ ẑ
0 0 Jz
0 By 0

∣∣∣∣∣∣ = −JzByx̂. (87)

Transverse low field solution For a low magnetic
field B0, the Navier-Stokes equation reduces to

−JzB0 + µ
∂2u

∂y2
− ∂p

∂x
= 0. (88)

The boundary conditions for the secondary duct are

u1|y=Ws
= 0, (89)

∂u1
∂y

∣∣∣∣
y=0

= 0, (90)

∂

∂y

∂p1
∂x

∣∣∣∣
y=0

= 0 (91)

and in the primary duct

u2|y=Wp
= uw, (92)

∂u2
∂y

∣∣∣∣
y=0

= 0, (93)

∂u2
∂y

∣∣∣∣
y=Wp

= 0, (94)

∂

∂y

∂p2
∂x

∣∣∣∣
y=0

= 0, (95)

∂

∂y

∂p2
∂x

∣∣∣∣
y=Wp

= 0 (96)

where uw is the velocity at the symmetry boundary.
Conservation of mass is given by∫ y=Ws

y=0

u1dy =

∫ y=Wp

y=0

u2dy. (97)

Pressure is continuous along the centre of each duct
but is constrained by the periodic boundary condi-
tions which requires negative and positive gradients
for the secondary and primary ducts respectively. As-
suming constant gradients within each duct, the con-
tinuity and periodic conditions for pressure can be
expressed as

∂p1
∂x

∣∣∣∣
y=0

Wr +
∂p2
∂x

∣∣∣∣
y=0

(Wp −Wr) = 0. (98)

The general solutions for pressure and velocity at
these two points are

u1 =

∞∑
n=0

Any
n, (99)

∂p1
∂x

=

∞∑
n=0

Cny
n, (100)

u2 =

∞∑
n=0

Dny
n, (101)

∂p2
∂x

=

∞∑
n=0

Eny
n. (102)

In view of the symmetry about the plane at y = 0,
only even integers of n are relevant. The minimum n
required to represent the flow profile is determined by
the number of critical points imposed by the bound-
ary conditions. For the secondary duct, n = 2 which
represents parabolic flow. Dimensional analysis of
(88) shows that (99) and (100) simplify to Poiseuille



flow.

u1 = A0 +A2y
2, (103)

∂p1
∂x

= C0. (104)

In the primary duct, the symmetry conditions in (94)
and (96) at y = Wp imply that there are least three
critical points for both the pressure gradient and ve-
locity. Using the pressure gradient as the constraint
for minimum n, (101) and (102) reduce to

u2 = D0 +D2y
2 +D4y

4 +D6y
6, (105)

∂p2
∂x

= E0 + E2y
2 + E4y

4. (106)

Substituting these solutions into (88) gives

2µA2 − C0 = JzB0, (107)

2µD2 − E0 = JzB0, (108)

y2 (12µD4 − E2) = 0, (109)

y4 (30µD6 − E4) = 0. (110)

Continuity becomes

A0Ws +
1

3
A2W

3
s −D0Wp −

1

3
D2W

3
p

− 1

5
D4W

5
p −

1

7
D6W

7
p = 0. (111)

The boundary conditions from (89), (92), (94) and
(96) give

A0 +A2W
2
s = 0, (112)

D0 +D2W
2
p +D4W

4
p +D6W

6
p = 0, (113)

2D2Wp + 4D4W
3
p + 6D6W

5
p = 0, (114)

2E2Wp + 4E4W
3
p = 0. (115)

The periodic pressure condition (98) gives

C0Wr + E0 (Wp −Wr) = 0. (116)

Solving the above system of equations gives

A0 =
1

2µW0

(
−16JzB0W

3
p

+ 147µuw (Wp −Wr))WpW
2
s , (117)

A2 =
1

2µW0

(
16JzB0W

3
p

− 147µuw (Wp −Wr))Wp, (118)

C0 =
1

W0

(
JzB0

(
16W 3

p − 49W 3
s

)
− 147µuwWp) (Wp −Wr) , (119)

D0 = − 1

2µW0

(
21JzB0W

3
sW

3
p+

µuw
(
31W 3

pWr − 98WpW
3
s + 98WrW

3
s

))
, (120)

D2 =
49JzB0W

3
sWp + 147µuwWpWr

2µW0
, (121)

D4 = −35JzB0W
3
s + 105µuwWr

2µWpW0
, (122)

D6 =
7JzB0W

3
s + 21µuwWr

2µW 3
pW0

, (123)

E0 =
1

W0

(
JzB0

(
−16W 3

p + 49W 3
s

)
+ 147µuwWp)Wr, (124)

E2 = −210JzB0W
3
s + 630µuwWr

WpW0
, (125)

E4 =
105JzB0W

3
s + 315µuwWr

W 3
pW0

(126)

where

W0 = 49W 3
s (Wp −Wr) + 16W 3

pWr. (127)

Transverse high field solution For a high magnetic
field B∞, the damping term reduces to

σu×B = σ

∣∣∣∣∣∣
x̂ ŷ ẑ
ux 0 0
0 By 0

∣∣∣∣∣∣ = σuxBy ẑ, (128)

σu×B×B = σ

∣∣∣∣∣∣
x̂ ŷ ẑ
0 0 uxBy
0 By 0

∣∣∣∣∣∣
= −σuxB2

y x̂. (129)

The Navier-Stokes equation at x1 and x2 becomes
respectively

−JzB∞ − σu1B2
∞ −

∂p1
∂x

= 0, (130)

−JzB∞ − σu2B2
∞ −

∂p2
∂x

= 0. (131)



Periodic pressure condition gives

∂p1
∂x

Wr +
∂p2
∂x

(Wp −Wr) = 0 (132)

and continuity∫ y=Ws

y=0

u1dy =

∫ y=Wp

y=0

u2dy (133)

reduces to

u1 = u2
Wp

Ws
. (134)

Solving gives

u1 = −
JzW

2
p

σB∞W∞
, (135)

u2 = − JzWpWs

σB∞W∞
, (136)

∂p1
∂x

=
JzB∞ (Wr −Wp) (Wp −Ws)

W∞
, (137)

∂p2
∂x

= −JzB∞Wr (Wp −Ws)

W∞
, (138)

W∞ = Wr (Wp −Ws) +WpWs. (139)

Derivation of Parallel Magnetic Field Solutions

The Lorentz force for a parrellel magnetic field in is
given by

J×Bz =

∣∣∣∣∣∣
r̂ θ̂ ẑ
Jr Jθ Jz
0 0 Bz

∣∣∣∣∣∣ = JθBz r̂,−JrBz θ̂ (140)

where Jr is assumed to take a power law in the form
of

Jr = J0
(
rn−2 −Wn−2

p

)
. (141)

The problem is assumed to be axisymmetric, hence

∂Ψ

∂θ
=
∂uθ
∂θ

=
∂p

∂θ
= 0. (142)

It is also assumed that∣∣∣∣∂uθ∂r
∣∣∣∣ >> ∣∣∣∣∂uθ∂z

∣∣∣∣ ≈ 0, (143)∣∣∣∣∂p∂r
∣∣∣∣ >> ∣∣∣∣∂p∂z

∣∣∣∣ ≈ 0, (144)

hence there are no dependencies on ẑ. From (142),
Jθ = 0. The Lorentz force therefore only has compo-
nent in θ̂. For axisymmetry with no dependency on
ẑ, the continuity equation

∇ · u =
1

r

∂rur
∂r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

= 0. (145)

becomes

∇ · u =
1

r

∂rur
∂r

= 0 (146)

which can be solved as

ur =
C

r
(147)

where C is the constant of integration. Applying the
boundary condition

ur|r=r0 = 0, (148)

C = 0 hence ur = 0 for all r.

Parallel low field solution For a low magnetic field
B0, the Navier-Stokes equation becomes

−∇p+ µ∇2u + J×B0 = 0. (149)

For a low Re,

u

r2
∝ ∇2u (150)

implying

u ∝ ∇p+ J×B0. (151)

Therefore with no radial velocity or radial Lorentz
force (

∇2u
)
· r̂ =

∂p

∂r
= 0 (152)

the problem reduces to a 1-dimensional force balance
in θ̂

µ

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

)
− J0B0

(
rn−2 −Wn−2

p

)
= 0. (153)

The general solution of

µ

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

)
= 0 (154)

is

uθ = A1r +A2r
−1. (155)

However, to account for the extra force in (153), two
additional terms were appended to give a particular
solution taking the form of

uθ = A1r +A2r
−1 +A3r

n +A4r
2 (156)



where, on the right hand side, the third term accounts
for the Lorentz force and the last term ensures the
boundary condition of Jr|r=Wp

= 0 is satisfied. Sub-

stituting into (153) gives(
µ
(
n2 − 1

)
A3r

n−2 − J0B0r
n−2)

+
(
3µA4 + J0B0W

n−2
p

)
= 0, (157)

µ
(
n2 − 1

)
A3r

n−2 − J0B0r
n−2 = 0, (158)(

3µA4 + J0B0W
n−2
p

)
= 0. (159)

Applying the boundary conditions

uθ|r=r0 = 0, (160)

uθ|r=Wp
= 0 (161)

gives

A1r0 +A2r
−1
0 +A3r

n
0 +A4r

2
0 = 0, (162)

A1Wp +A2W
−1
p +A3W

n
p +A4W

2
p = 0. (163)

Solving the above system of equations gives

A1 =
J0B0

3µ (n2 − 1)
(
W 2
p − r20

) (3rn+1
0

−
(
n2 − 1

)
r30W

n−2
p +

(
n2 − 4

)
Wn+1
p

)
=
J0B0

µ
C1, (164)

A2 =
J0B0

3µ (n2 − 1)
(
W 2
p − r20

)r0 (−3rn0W
2
p

+
(
n2 − 1

)
r20W

n
p − r0

(
n2 − 4

)
Wn+1
p

)
=
J0B0

µ
C2, (165)

A3 =
J0B0

µ

1

(n2 − 1)
=
J0B0

µ
C3, (166)

A4 = −J0B0

µ

Wn−2
p

3
=
J0B0

µ
C4. (167)

Application of L’Hôpital’s rule as n→ −1

uθ =A1r + (A2 +A3) r−1 +A4r
2, (168)

lim
n→−1

(A2 +A3) = −B0J0
(
3W 3

p ln r0 + r20

(2r0 − 2Wp − 3Wp lnWp)) /

6µWp

(
r20 −W 2

p

)
, (169)

lim
n→−1

A1 = B0J0
(
2r30 − 2W 3

p−

3r20Wp ln r0 + 3W 3
p lnWp

)
/

6µ
(
r20Wp −W 3

p

)
(170)

and as n→ 1

uθ = (A1 +A3) r +A2r
−1 +A4r

2, (171)

lim
n→1

(A1 +A3) = B0J0
(
2r30 − 2W 3

p−

3r20Wp ln r + 3W 3
p lnWp

)
/

6µ
(
r20Wp −W 3

p

)
, (172)

lim
n→1

A2 = −B0J0r
2
0Wp (2r0 −Wp

(−2− 3 ln r0 + 3 lnWp)) /(
6µ
(
r20 −W 2

p

))
(173)

shows that the velocity remains finite as |n| → 1.

Parallel high field solution For a high magnetic field
B∞, Navier-Stokes equation becomes

−∇p+ J×B∞ + u×B∞ ×B∞ = 0. (174)

With no radial velocity or radial Lorentz force

u×B∞ ×B∞r = J×B∞r =
∂p

∂r
= 0 (175)

and (174) reduces to a force balance in θ̂

−JrB∞ − σuθB2
∞ = 0. (176)

Substituting Jr from (141) gives

uθ = −
J0
(
rn−2 −Wn−2

p

)
σB∞

. (177)


