2 research outputs found

    Discovery and computational rationalization of diminishing alternation in [n]dendralenes

    No full text
    The [n]dendralenes are a family of acyclic hydrocarbons which, by virtue of their ability to rapidly generate structural complexity, have attracted significant recent synthetic attention. [3]Dendralene through [8]dendralene have been previously prepared but no higher member of the family has been reported to date. Here, we describe the first chemical syntheses of the "higher" dendralenes, [9]dendralene through [12]dendralene. We also report a detailed investigation into the spectroscopic properties and chemical reactivity of the complete family of fundamental hydrocarbons, [3]dendralene to [12]dendralene. These studies reveal the first case of diminishing alternation in behavior in a series of related structures. We also report a comprehensive series of computational studies, which trace this dampening oscillatory effect in both spectroscopic measurements and chemical reactivity to conformational preferences.Mehmet F. Saglam, Thomas Fallon, Michael N. Paddon-Row and Michael S. Sherbur

    A broad-spectrum synthesis of tetravinylethylenes

    No full text
    The first general synthesis of compounds of the tetravinylethylene (TVE) family is reported. Ramirez-type dibromo-olefination of readily accessible penta-1,4-dien-3-ones generates 3,3-dibromo[3]dendralenes, which undergo twofold Negishi, Suzuki-Miyaura or Mizoroki-Heck reactions with a wide variety of olefinic coupling partners. This route delivers a broad range of unsymmetrically substituted tetravinylethylenes with up to three different alkenyl substituents attached to the central C=C bond. The extensive scope of the approach is demonstrated by the preparation of the first higher order oligo-alkenic through-conjugated/cross-conjugated hybrid compounds. An unsymmetrically substituted TVE is shown to undergo a domino electrocyclization-cycloaddition with high site-selectivity and diastereoselectivity, thereby demonstrating the substantial synthetic potential of substituted TVEs for controlled, rapid structural complexity generation.Kelsey L. Horvath, Dr. Christopher G. Newton, Dr. Kimberley A. Roper, Dr. Jas S. Ward, Michael S. Sherbur
    corecore