2,230 research outputs found

    Do changes in drinking motives mediate the relation between personality change and maturing out of problem drinking?

    Get PDF
    Recent research has indicated that developmental changes in the personality traits of neuroticism and impulsivity correlate with changes in problem drinking during emerging and young adulthood. However, it remains unclear what potential mechanisms, or mediators, could account for these associations. Drinking motives, particularly drinking to regulate negative affect (drinking to cope) and to get “high” or “drunk” (drinking for enhancement) have been posited to mediate the relationship between personality and drinking problems. Recent work indicates changes in drinking motives parallel changes in alcohol involvement from adolescence to young adulthood. The current study examined changes in drinking motives (i.e., coping and enhancement) as potential mediators of the relation between changes in personality (impulsivity and neuroticism) with changes in alcohol problems in emerging and young adulthood. Analyses were based on data collected from a cohort of college students (N=489) at varying risk for AUDs from ages 18–35. Parallel process latent growth modeling indicated that change in coping (but not enhancement) motives specifically mediated the relation between changes in neuroticism and alcohol problems as well as the relation between changes in impulsivity and alcohol problems. Findings suggest that change in coping motives is an important mechanism in the relation between personality change and the “maturing out” of problematic alcohol involvement

    Towards the characterization and validation of alcohol use disorder subtypes: Integrating consumption and symptom data

    Get PDF
    BACKGROUND: There is evidence that measures of alcohol consumption, dependence and abuse are valid indicators of qualitatively different subtypes of alcohol involvement yet also fall along a continuum. The present study attempts to resolve the extent to which variations in alcohol involvement reflect a difference in kind versus a difference in degree. METHOD: Data were taken from the 2001–2002 National Epidemiologic Survey of Alcohol and Related Conditions. The sample (51% male; 72% white/non-Hispanic) included respondents reporting past 12-month drinking at both waves (wave 1: n=33644; wave 2: n=25186). We compared factor mixture models (FMMs), a hybrid of common factor analysis (FA) and latent class analysis (LCA), against FA and LCA models using past 12-month alcohol use disorder (AUD) criteria and five indicators of alcohol consumption reflecting frequency and heaviness of drinking. RESULTS: Model comparison revealed that the best-fitting model at wave 1 was a one-factor four-class FMM, with classes primarily varying across dependence and consumption indices. The model was replicated using wave 2 data, and validated against AUD and dependence diagnoses. Class stability from waves 1 to 2 was moderate, with greatest agreement for the infrequent drinking class. Within-class associations in the underlying latent factor also revealed modest agreement over time. CONCLUSIONS: There is evidence that alcohol involvement can be considered both categorical and continuous, with responses reduced to four patterns that quantitatively vary along a single dimension. Nosologists may consider hybrid approaches involving groups that vary in pattern of consumption and dependence symptomatology as well as variation of severity within group

    Induced antiferromagnetism and large magnetoresistances in RuSr2(Nd,Y,Ce)2Cu2O10-d ruthenocuprates

    Get PDF
    RuSr2(Nd,Y,Ce)2Cu2O10-d ruthenocuprates have been studied by neutron diffraction, magnetotransport and magnetisation measurements and the electronic phase diagram is reported. Separate Ru and Cu spin ordering transitions are observed, with spontaneous Cu antiferromagnetic order for low hole doping levels p, and a distinct, induced-antiferromagnetic Cu spin phase in the 0.02 < p < 0.06 pseudogap region. This ordering gives rise to large negative magnetoresistances which vary systematically with p in the RuSr2Nd1.8-xY0.2CexCu2O10-d series. A collapse of the magnetoresistance (MR) and magnetisation in the pre-superconducting region may signify the onset of superconducting fluctuations.Comment: 22 pages, 11 figure

    Production of Single Heavy Charged Leptons at a Linear Collider

    Get PDF
    A sequential fourth generation of quarks and leptons is allowed by precision electroweak constraints if the mass splitting between the heavy quarks is between 50 and 80 GeV. Although heavy quarks can be easily detected at the LHC, it is very difficult to detect a sequential heavy charged lepton, L, due to large backgrounds. Should the L mass be above 250 GeV, it can not be pair-produced at a 500 GeV ILC. We calculate the cross section for the one-loop process e+e- -> L tau. Although the cross section is small, it may be detectable. We also consider contributions from the two Higgs doublet model and the Randall-Sundrum model, in which case the cross section can be substantially higher.Comment: 14 pages, 7 figure

    Search for Heavy Leptons at Hadron Colliders

    Full text link
    Four models are considered which contain heavy leptons beyond the three families of the standard model. Two are fourth-generation extensions of the standard model in which the right-handed heavy leptons are either isosinglets or in an isodoublet; the other two are motivated by the aspon model of CP violation. In all these models, the heavy neutrino can either be heavier than, or comparable in mass to, the charged lepton leading to the possibility that the charged lepton is very long-lived. Production cross section and signatures for the heavy leptons are computed for the SSC and LHC.Comment: 17 pages(8 figures are not included),TRI-PP-92-9

    Large-scale multielectrode recording and stimulation of neural activity

    Get PDF
    Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions

    BXsl+lB \to X_s l^+ l^- decay in a Top quark two-Higgs-doublet model

    Full text link
    We calculate the new physics contributions to the rare semileptonic decay BXsl+lB \to X_s l^+ l^- (l=e,μ)(l=e,\mu) induced by the charged-Higgs loop diagrams appeared in the top quark two-Higgs doublet model (T2HDM). Within the considered parameter space, we found that (a) the effective Wilson coefficients C~ieff(mb)\widetilde{C}_{i}^{eff}(m_b) (i=7γ,9Vi =7\gamma, 9V and 10A10A) in the T2HDM are always standard model like; (b) the new physics contributions to C~7γeff\widetilde{C}_{7\gamma}^{eff} and C~9Veff\widetilde{C}_{9V}^{eff} can be significant, but they tend to cancel each other; and (c) the T2HDM predictions for Br(BXsl+l)Br(B \to X_s l^+ l^-) agree well with the measured value within one standard deviation.Comment: 18 pages, 8 eps figures, typos removed, final version appeared in PR
    corecore