2,460 research outputs found

    Amputee perception of prosthetic ankle stiffness during locomotion

    Full text link
    Abstract Background Prosthetic feet are spring-like, and their stiffness critically affects the wearer’s stability, comfort, and energetic cost of walking. Despite the importance of stiffness in ambulation, the prescription process often entails testing a limited number of prostheses, which may result in patients receiving a foot with suboptimal mechanics. To understand the resolution with which prostheses should be individually optimized, we sought to characterize below-knee prosthesis users’ psychophysical sensitivity to prosthesis stiffness. Methods We used a novel variable-stiffness ankle prosthesis to measure the repeatability of user-selected preferred stiffness, and implemented a psychophysical experiment to characterize the just noticeable difference of stiffness during locomotion. Results All eight subjects with below-knee amputation exhibited high repeatability in selecting their Preferred Stiffness (mean coefficient of variation: 14.2 ± 1.7%) and were able to correctly identify a 7.7 ± 1.3% change in ankle stiffness (with 75% accuracy). Conclusions This high sensitivity suggests prosthetic foot stiffness should be tuned with a high degree of precision on an individual basis. These results also highlight the need for a pairing of new robotic prescription tools and mechanical characterizations of prosthetic feet.https://deepblue.lib.umich.edu/bitstream/2027.42/146187/1/12984_2018_Article_432.pd

    Transcription factor expression levels and environmental signals constrain transcription factor innovation

    Get PDF
    Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adaptation varies between different regulators, even when they are closely related. To identify factors influencing propensity for innovation, we utilise a Pseudomonas fluorescens SBW25 strain rendered incapable of flagellar mediated motility in soft-agar plates via deletion of the flagellar master regulator (fleQ). This bacterium can evolve to rescue flagellar motility via gene regulatory network rewiring of an alternative transcription factor to rescue activity of FleQ. Previously, we have identified two members (out of 22) of the RpoN-dependent enhancer binding protein (RpoN-EBP) family of transcription factors (NtrC and PFLU1132) that are capable of innovating in this way. These two transcription factors rescue motility repeatably and reliably in a strict hierarchy – with NtrC the only route in a ∆fleQ background, and PFLU1132 the only route in a ∆fleQ∆ntrC background. However, why other members in the same transcription factor family have not been observed to rescue flagellar activity is unclear. Previous work shows that protein homology cannot explain this pattern within the protein family (RpoN-EBPs), and mutations in strains that rescued motility suggested high levels of transcription factor expression and activation drive innovation. We predict that mutations that increase expression of the transcription factor are vital to unlock evolutionary potential for innovation. Here, we construct titratable expression mutant lines for 11 of the RpoN-EBPs in P. fluorescens. We show that in five additional RpoN-EBPs (FleR, HbcR, GcsR, DctD, AauR and PFLU2209), high expression levels result in different mutations conferring motility rescue, suggesting alternative rewiring pathways. Our results indicate that expression levels (and not protein homology) of RpoN-EBPs are a key constraining factor in determining evolutionary potential for innovation. This suggests that transcription factors that can achieve high expression through few mutational changes, or transcription factors that are active in the selective environment, are more likely to innovate and contribute to adaptive gene regulatory network evolution

    Loss of LKB1-NUAK1 signalling enhances NF-κB activity in a spheroid model of high-grade serous ovarian cancer

    Get PDF
    High-grade serous ovarian cancer (HGSOC) is an aggressive malignancy often diagnosed at an advanced stage. Although most HGSOC patients respond initially to debulking surgery combined with cytotoxic chemotherapy, many ultimately relapse with platinum-resistant disease. Thus, improving outcomes requires new ways of limiting metastasis and eradicating residual disease. We identified previously that Liver kinase B1 (LKB1) and its substrate NUAK1 are implicated in EOC spheroid cell viability and are required for efficient metastasis in orthotopic mouse models. Here, we sought to identify additional signalling pathways altered in EOC cells due to LKB1 or NUAK1 loss-of-function. Transcriptome analysis revealed that inflammatory signalling mediated by NF-κB transcription factors is hyperactive due to LKB1-NUAK1 loss in HGSOC cells and spheroids. Upregulated NF-κB signalling due to NUAK1 loss suppresses reactive oxygen species (ROS) production and sustains cell survival in spheroids. NF-κB signalling is also activated in HGSOC precursor fallopian tube secretory epithelial cell spheroids, and is further enhanced by NUAK1 loss. Finally, immunohistochemical analysis of OVCAR8 xenograft tumors lacking NUAK1 displayed increased RelB expression and nuclear staining. Our results support the idea that NUAK1 and NF-κB signalling pathways together regulate ROS and inflammatory signalling, supporting cell survival during each step of HGSOC pathogenesis. We propose that their combined inhibition may be efficacious as a novel therapeutic strategy for advanced HGSOC

    Monitoring soil biodiversity in nature reserves in England - a role for metabarcoding

    Get PDF
    Tullgren extracts of soil mesofauna are proving challenging to identify using trained volunteers. Could metabarcoding be a rapid, cost-effective approach for monitoring soil mesofauna and characterising their communities

    Computer-Based and Online Therapy for Depression and Anxiety in Children and Adolescents

    Get PDF
    Objective: The purpose of this study was to provide an overview of computer-based and online therapies (e-therapy) to treat children and adolescents with depression and/or anxiety, and to outline programs that are evidence based or currently being researched. Methods: We began by defining the topic and highlighting the issues at the forefront of the field. We identified computer and Internet-based interventions designed to prevent or treat depression or anxiety that were tested with children and young people <18 years of age (or inclusive of this age range together with emerging adults). We included randomized controlled trials (RCTs). We summarized available relevant systematic reviews. Results: There is an increasing body of evidence that supports the use of computers and the Internet in the provision of interventions for depression and anxiety in children and adolescents. A number of programs have been shown to be effective in well-designed RCTs. Replication and long-term follow-up studies are needed to confirm results. Conclusions: There are now a range of effective computerized interventions for young people with depression and anxiety. This is likely to impact positively on attempts to make psychological therapies widely available to children and young people. We expect to see increased program sophistication and a proliferation of programs in the coming years. Research efforts, when developing programs, need to align with technological advances to maximize appeal. Implementation research is needed to determine the optimal modes of delivery and effectiveness of e-therapies in clinical practice. Given the large number of unproven program on the Internet, ensuring that there is clear information for patients about evidence for individual programs is likely to present a challenge

    Polygenic mechanisms underpinning the response to exercise-induced muscle damage in humans:In vivo and in vitro evidence

    Get PDF
    We investigated whether 20 candidate single nucleotide polymorphisms (SNPs) were associated with in vivo exercise-induced muscle damage (EIMD), and with an in vitro skeletal muscle stem cell wound healing assay. Sixty-five young, untrained Caucasian adults performed 120 maximal eccentric knee-extensions on an isokinetic dynamometer to induce EIMD. Maximal voluntary isometric/isokinetic knee-extensor torque, knee joint range of motion (ROM), muscle soreness, serum creatine kinase activity and interleukin-6 concentration were assessed before, directly after and 48 h after EIMD. Muscle stem cells were cultured from vastus lateralis biopsies from a separate cohort (n = 12), and markers of repair were measured in vitro. Participants were genotyped for all 20 SNPs using real-time PCR. Seven SNPs were associated with the response to EIMD, and these were used to calculate a total genotype score, which enabled participants to be segregated into three polygenic groups: ‘preferential’ (more ‘protective’ alleles), ‘moderate’, and ‘non-preferential’. The non-preferential group was consistently weaker than the preferential group (1.93 ± 0.81 vs. 2.73 ± 0.59 N ∙ m/kg; P = 9.51 × 10−4) and demonstrated more muscle soreness (p = 0.011) and a larger decrease in knee joint ROM (p = 0.006) following EIMD. Two TTN-AS1 SNPs in linkage disequilibrium were associated with in vivo EIMD (rs3731749, p ≤ 0.005) and accelerated muscle stem cell migration into the artificial wound in vitro (rs1001238, p ≤ 0.006). Thus, we have identified a polygenic profile, linked with both muscle weakness and poorer recovery following EIMD. Moreover, we provide evidence for a novel TTN gene-cell-skeletal muscle mechanism that may help explain some of the interindividual variability in the response to EIMD.</p

    A structural and mechanistic study of π-clamp-mediated cysteine perfluoroarylation

    Get PDF
    Natural enzymes use local environments to tune the reactivity of amino acid side chains. In searching for small peptides with similar properties, we discovered a four-residue π-clamp motif (Phe-Cys-Pro-Phe) for regio- and chemoselective arylation of cysteine in ribosomally produced proteins. Here we report mutational, computational, and structural findings directed toward elucidating the molecular factors that drive π-clamp-mediated arylation. We show the significance of a trans conformation prolyl amide bond for the π-clamp reactivity. The π-clamp cysteine arylation reaction enthalpy of activation (ΔH‡) is significantly lower than a non-π-clamp cysteine. Solid-state NMR chemical shifts indicate the prolyl amide bond in the π-clamp motif adopts a 1:1 ratio of the cis and trans conformation, while in the reaction product Pro3 was exclusively in trans. In two structural models of the perfluoroarylated product, distinct interactions at 4.7 Å between Phe1 side chain and perfluoroaryl electrophile moiety are observed. Further, solution 19F NMR and isothermal titration calorimetry measurements suggest interactions between hydrophobic side chains in a π-clamp mutant and the perfluoroaryl probe. These studies led us to design a π-clamp mutant with an 85-fold rate enhancement. These findings will guide us toward the discovery of small reactive peptides to facilitate abiotic chemistry in water.National Institutes of Health (U.S.) (Grant R01GM110535)National Institutes of Health (U.S.) (Grant GM088204)National Science Foundation (U.S.) (Award CHE-1464804

    A method-centric 'User Manual' for the mitigation of diffuse water pollution from agriculture

    Get PDF
    We describe the development of a manual of methods for mitigating diffuse water pollution from agriculture and its important influence on policy and practice in England and Wales. The objective of the ‘User Manual’ was to provide policy makers and those implementing policies with information about the cost, effectiveness and applicability of potential methods in a form that would be readily understood by non-specialists. The ‘User Manual’ was based on earlier reports synthesizing available research data and, where data were unavailable, used expert elicitation. The outcome generated 44 potential methods (under the broad categories of land use, soil management, livestock management, fertilizer management, manure management and farm infrastructure) and described the simultaneous impact of applying each method on losses of nitrate, phosphorus and faecal indicator organisms relative to baseline losses. Estimates of cost and effectiveness were presented at the whole-farm level for seven model farm types. Methods differed widely in their cost-effectiveness and applicability to the different model farms. Advantages and limitations of the approach are discussed and subsequent developments of the original ‘User Manual’ are described, together with the opinions of catchment officers who have used the ‘User Manual’ to implement mitigation methods on farms
    • …
    corecore