5,420 research outputs found

    TB127: Age and Thinning Effects on Wood Properties of Red Spruce (Picea rubens Sarg.)

    Get PDF
    Ten overstory red spruce were selected from a thinned stand and 1 0 from an unthinned stand. Average age of sample trees was approximately 80 years. Specific gravity reached a maximum at age 53 in the thinned stand and age 72 in the unthinned stand, after which it remained relatively constant. Stiffness reached a maximum at ages 35 and 50, and bending strength at ages 41 and 54; both remained relatively constant with further increases in age. Stiffness showed the largest relative difference between juvenile and mature wood, 22%, and specific gravity the smallest difference, 8%. Thinning did not adversely affect any of the properties, even though the width of some growth rings was increased by three to four times. These results suggest that (1) growth of mature red spruce stands can be increased by thinning without affecting wood physical properties, and (2) intensive management practices designed to shorten the rotation age may lead to stands that have not begun to produce mature wood before they are harvested. These short-rotation stands will contain a higher percentage of juvenile wood than stands presently being harvested, which means that pulp yields will decrease and the material will be less suitable for structural lumber.https://digitalcommons.library.umaine.edu/aes_techbulletin/1063/thumbnail.jp

    Marine Biodiversity and Ecosystem Health of Ilhas Selvagens, Portugal

    Get PDF
    In September 2015, National Geographic's Pristine Seas project, in conjunction with the Instituto Universitário-Portugal, The Waitt Institute, the University of Western Australia, and partners conducted a comprehensive assessment of the rarely surveyed Ilhas Selvagens to explore the marine environment, especially the poorly understood deep sea and open ocean areas, and quantify the biodiversity of the nearshore marine environment

    A Spectral Algorithm with Additive Clustering for the Recovery of Overlapping Communities in Networks

    Get PDF
    This paper presents a novel spectral algorithm with additive clustering designed to identify overlapping communities in networks. The algorithm is based on geometric properties of the spectrum of the expected adjacency matrix in a random graph model that we call stochastic blockmodel with overlap (SBMO). An adaptive version of the algorithm, that does not require the knowledge of the number of hidden communities, is proved to be consistent under the SBMO when the degrees in the graph are (slightly more than) logarithmic. The algorithm is shown to perform well on simulated data and on real-world graphs with known overlapping communities.Comment: Journal of Theoretical Computer Science (TCS), Elsevier, A Para\^itr

    Perturbation Theory for Spin Ladders Using Angular-Momentum Coupled Bases

    Full text link
    We compute bulk properties of Heisenberg spin-1/2 ladders using Rayleigh-Schr\"odinger perturbation theory in the rung and plaquette bases. We formulate a method to extract high-order perturbative coefficients in the bulk limit from solutions for relatively small finite clusters. For example, a perturbative calculation for an isotropic 2×122\times 12 ladder yields an eleventh-order estimate of the ground-state energy per site that is within 0.02% of the density-matrix-renormalization-group (DMRG) value. Moreover, the method also enables a reliable estimate of the radius of convergence of the perturbative expansion. We find that for the rung basis the radius of convergence is λc≃0.8\lambda_c\simeq 0.8, with λ\lambda defining the ratio between the coupling along the chain relative to the coupling across the chain. In contrast, for the plaquette basis we estimate a radius of convergence of λc≃1.25\lambda_c\simeq 1.25. Thus, we conclude that the plaquette basis offers the only currently available perturbative approach which can provide a reliable treatment of the physically interesting case of isotropic (λ=1)(\lambda=1) spin ladders. We illustrate our methods by computing perturbative coefficients for the ground-state energy per site, the gap, and the one-magnon dispersion relation.Comment: 22 pages. 9 figure

    On the Non-invasive Measurement of the Intrinsic Quantum Hall Effect

    Full text link
    With a model calculation, we demonstrate that a non-invasive measurement of intrinsic quantum Hall effect defined by the local chemical potential in a ballistic quantum wire can be achieved with the aid of a pair of voltage leads which are separated by potential barriers from the wire. B\"uttiker's formula is used to determine the chemical potential being measured and is shown to reduce exactly to the local chemical potential in the limit of strong potential confinement in the voltage leads. Conditions for quantisation of Hall resistance and measuring local chemical potential are given.Comment: 16 pages LaTex, 2 post-script figures available on reques

    Novel Methods for Determining Effective Interactions for the Nuclear Shell Model

    Full text link
    The Contractor Renormalization (CORE) method is applied in combination with modern effective-theory techniques to the nuclear many-body problem. A one-dimensional--yet ``realistic''--nucleon-nucleon potential is introduced to test these novel ideas. It is found that the magnitude of ``model-space'' (CORE) corrections diminishes considerably when an effective potential that eliminates the hard-momentum components of the potential is first introduced. As a result, accurate predictions for the ground-state energy of the there-body system are made with relatively little computational effort when both techniques are used in a complementary fashion.Comment: 14 pages, 5 figures and 2 tabl
    • …
    corecore