242 research outputs found

    Multidimensional scaling reveals a color dimension unique to 'color-deficient' observers

    Get PDF
    Normal color vision depends on the relative rates at which photons are absorbed in three types of retinal cone:short-wave (S), middle-wave (M) and long-wave (L) cones, maximally sensitive near 430, 530 and 560nm, respectively. But 6% of men exhibit an X-linked variant form of color vision called deuteranomaly [1]. Their color vision is thought to depend on S cones and two forms of long-wave cone (L, Lâ€Č) [2,3]. The two types of L cone contain photopigments that are maximally sensitive near 560nm, but their spectral sensitivities are different enough that the ratio of their activations gives a useful chromatic signal

    Rational foundation of GR in terms of statistical mechanic in the AdS/CFT framework

    Full text link
    In this article, we work out the microscopic statistical foundation of the supergravity description of the simplest 1/2 BPS sector in the AdS(5)/CFT(4). Then, all the corresponding supergravity observables are related to thermodynamical observables, and General Relativity is understood as a mean-field theory. In particular, and as an example, the Superstar is studied and its thermodynamical properties clarified.Comment: 13 pages, 6 eps figures, latex, some improvements introduced, reference added, typos correcte

    M-theory Supertubes with Three and Four Charges

    Full text link
    Using the covariant M5-brane action, we construct configurations corresponding to supertubes with three and four charges. We derive the BPS equations and study the full structure of the solutions. In particular, we find new solutions involving arbitrariness in field strengths.Comment: 24 pages, references added and typos correcte

    Coarse-Graining the Lin-Maldacena Geometries

    Full text link
    The Lin-Maldacena geometries are nonsingular gravity duals to degenerate vacuum states of a family of field theories with SU(2|4) supersymmetry. In this note, we show that at large N, where the number of vacuum states is large, there is a natural `macroscopic' description of typical states, giving rise to a set of coarse-grained geometries. For a given coarse-grained state, we can associate an entropy related to the number of underlying microstates. We find a simple formula for this entropy in terms of the data that specify the geometry. We see that this entropy function is zero for the original microstate geometries and maximized for a certain ``typical state'' geometry, which we argue is the gravity dual to the zero-temperature limit of the thermal state of the corresponding field theory. Finally, we note that the coarse-grained geometries are singular if and only if the entropy function is non-zero.Comment: 29 pages, LaTeX, 3 figures; v2 references adde

    Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq

    Get PDF
    The utilisation of genome-wide transcriptomics has played a pivotal role in advancing the field of toxicology, allowing the mapping of transcriptional signatures to chemical exposures. These activities have uncovered several transcriptionally regulated pathways that can be utilised for assessing the perturbation impact of a chemical and also the identification of toxic mode of action. However, current transcriptomic platforms are not very amenable to high-throughput workflows due to, high cost, complexities in sample preparation and relatively complex bioinformatic analysis. Thus, transcriptomic investigations are usually limited in dose and time dimensions and are, therefore, not optimal for implementation in risk assessment workflows. In this study, we investigated a new cost-effective, transcriptomic assay, TempO-Seq, which alleviates the aforementioned limitations. This technique was evaluated in a 6-compound screen, utilising differentiated kidney (RPTEC/TERT1) and liver (HepaRG) cells and compared to non-transcriptomic label-free sensitive endpoints of chemical-induced disturbances, namely phase contrast morphology, xCELLigence and glycolysis. Non-proliferating cell monolayers were exposed to six sub-lethal concentrations of each compound for 24 h. The results show that utilising a 2839 gene panel, it is possible to discriminate basal tissue-specific signatures, generate dose-response relationships and to discriminate compound-specific and cell type-specific responses. This study also reiterates previous findings that chemical-induced transcriptomic alterations occur prior to cytotoxicity and that transcriptomics provides in depth mechanistic information of the effects of chemicals on cellular transcriptional responses. TempO-Seq is a robust transcriptomic platform that is well suited for in vitro toxicity experiments.Horizon 2020(H2020)68100

    The Library of Babel: On the origin of gravitational thermodynamics

    Full text link
    We show that heavy pure states of gravity can appear to be mixed states to almost all probes. For AdS_5 Schwarzschild black holes, our arguments are made using the field theory dual to string theory in such spacetimes. Our results follow from applying information theoretic notions to field theory operators capable of describing very heavy states in gravity. For half-BPS states of the theory which are incipient black holes, our account is exact: typical microstates are described in gravity by a spacetime ``foam'', the precise details of which are almost invisible to almost all probes. We show that universal low-energy effective description of a foam of given global charges is via certain singular spacetime geometries. When one of the specified charges is the number of D-branes, the effective singular geometry is the half-BPS ``superstar''. We propose this as the general mechanism by which the effective thermodynamic character of gravity emerges.Comment: LaTeX, 6 eps figures, uses young.sty and wick.sty; Version 2: typos corrected, minor rewordings and clarifications, references adde

    A Monte-Carlo study of the AdS/CFT correspondence: an exploration of quantum gravity effects

    Get PDF
    In this paper we study the AdS/CFT correspondence for N=4 SYM with gauge group U(N), compactified on S^3 in four dimensions using Monte-Carlo techniques. The simulation is based on a particular reduction of degrees of freedom to commuting matrices of constant fields, and in particular, we can write the wave functions of these degrees of freedom exactly. The square of the wave function is equivalent to a probability density for a Boltzman gas of interacting particles in six dimensions. From the simulation we can extract the density particle distribution for each wave function, and this distribution can be interpreted as a special geometric locus in the gravitational dual. Studying the wave functions associated to half-BPS giant gravitons, we are able to show that the matrix model can measure the Planck scale directly. We also show that the output of our simulation seems to match various theoretical expectations in the large N limit and that it captures 1/N effects as statistical fluctuations of the Boltzman gas with the expected scaling. Our results suggest that this is a very promising approach to explore quantum corrections and effects in gravitational physics on AdS spaces.Comment: 40 pages, 7 figures, uses JHEP. v2: references adde

    Entropy of near-extremal black holes in AdS_5

    Get PDF
    We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.Comment: LaTeX; v2: references and a few additional comments adde

    Semi-classical Probe Strings on Giant Gravitons Backgrounds

    Full text link
    In the first part of this paper we study two Z2Z_2 symmetries of the LLM metric, both of which exchange black and white regions. One of them which can be interpreted as the particle-hole symmetry is the symmetry of the whole supergravity solution while the second one is just the symmetry of the metric and changes the sign of the fivefrom flux. In the second part of the paper we use closed string probes and their semi-classical analysis to compare the two 1/2 BPS deformations of AdS5×S5AdS_5\times S^5, the smooth LLM geometry which contains localized giant gravitons and the superstar case which is a solution with naked singularity corresponding to smeared giants. We discuss the realization of the Z2Z_2 symmetry in the semi-classical closed string probes point of view.Comment: 29 pages, 6 .eps figures; v2: References adde
    • 

    corecore