2 research outputs found

    Turbulence causes kinematic and behavioural adjustments in a flapping flier

    Get PDF
    Turbulence is a widespread phenomenon in the natural world, but its influence on flapping fliers remains little studied. We assessed how freestream turbulence affected the kinematics, flight effort and track properties of homing pigeons (Columba livia), using the fine-scale variations in flight height as a proxy for turbulence levels. Birds showed a small increase in their wingbeat amplitude with increasing turbulence (similar to laboratory studies), but this was accompanied by a reduction in mean wingbeat frequency, such that their flapping wing speed remained the same. Mean kinematic responses to turbulence may therefore enable birds to increase their stability without a reduction in propulsive efficiency. Nonetheless, the most marked response to turbulence was an increase in the variability of wingbeat frequency and amplitude. These stroke-to-stroke changes in kinematics provide instantaneous compensation for turbulence. They will also increase flight costs. Yet pigeons only made small adjustments to their flight altitude, likely resulting in little change in exposure to strong convective turbulence. Responses to turbulence were therefore distinct from responses to wind, with the costs of high turbulence being levied through an increase in the variability of their kinematics and airspeed. This highlights the value of investigating the variability in flight parameters in free-living animals

    Derivation of body motion via appropriate smoothing of acceleration data

    No full text
    Animal movement, as measured by the overall dynamic body acceleration (ODBA), has recently been shown to correlate well with energy expenditure. However, accelerometers measure a summed acceleration derived from 2 components: static (due to gravity) and dynamic (due to motion). Since only the dynamic component is necessary for the calculation of ODBA, there is a need to establish a robust method for determining dynamic acceleration, currently done by substracting static values from the total acceleration. This study investigated the variability in ODBA arising from deriving static acceleration by smoothing total acceleration over different durations. ODBA was calculated for 3 different modes of locomotion within 1 species (the imperial shag) and for swimming in 4 species of marine vertebrates that varied considerably in body size. ODBA was found to vary significantly with the length of the running mean. Furthermore, the variability of ODBA across running means appeared to be related to the stroke period and hence body size. The results suggest that the running mean should be taken over a minimum period of 3 s for species with a dominant stroke period of up to this value. For species with a dominant stroke period above 3 s, it is suggested that static acceler-ation be derived over a period of no less than 1 stroke cycle
    corecore