4 research outputs found

    Multiple recent HCAR2 structures demonstrate a highly dynamic ligand binding and G protein activation mode

    No full text
    Abstract A surprisingly clear picture of the allosteric mechanism connecting G protein-coupled receptor agonists with G protein binding—and back – is revealed by a puzzle of thirty novel 3D structures of the hydroxycarboxylic acid receptor 2 (HCAR2) in complex with eight different orthosteric and a single allosteric agonist. HCAR2 is a sensor of β-hydroxybutyrate, niacin and certain anti-inflammatory drugs. Surprisingly, agonists with and without on-target side effects bound very similarly and in a completely occluded orthosteric binding site. Thus, despite the many structures we are still left with a pertinent need to understand the molecular dynamics of this and similar systems

    Molecular dynamics-based identification of binding pathways and two distinct high-affinity sites for succinate in succinate receptor 1/GPR91

    No full text
    SUCNR1 is an auto- and paracrine sensor of the metabolic stress signal succinate. Using unsupervised molecular dynamics (MD) simulations (170.400 ns) and mutagenesis across human, mouse, and rat SUCNR1, we characterize how a five-arginine motif around the extracellular pole of TM-VI determines the initial capture of succinate in the extracellular vestibule (ECV) to either stay or move down to the orthosteric site. Metadynamics demonstrate low-energy succinate binding in both sites, with an energy barrier corresponding to an intermediate stage during which succinate, with an associated water cluster, unlocks the hydrogen-bond-stabilized conformationally constrained extracellular loop (ECL)-2b. Importantly, simultaneous binding of two succinate molecules through either a “sequential” or “bypassing” mode is a frequent endpoint. The mono-carboxylate NF-56-EJ40 antagonist enters SUCNR1 between TM-I and -II and does not unlock ECL-2b. It is proposed that occupancy of both high-affinity sites is required for selective activation of SUCNR1 by high local succinate concentrations.</p
    corecore