232 research outputs found

    A human body model for dynamic response analysis of an integrated human-seat-controller-high speed marine craft interaction system

    Get PDF
    Small boats are increasingly being operated at high speed in rough weather by organisations carrying out essential missions such as the military and rescue services. Crew and passengers on these boats are exposed to continuous vibration and impacts leading to reduced crew effectiveness, fatigue and the possibility of injury. In addition to this marine craft will soon fall under the jurisdiction of the European Union Directive 2002/44/EC on the protection of workers from vibration.To assess the possibility of injury and mitigate it at the design stage of a vessel a design tool is needed to assess the vibration levels on/in the human body while the boat operates in dynamic environments. A review of current human body models is presented and a new human body model, which allows for estimates of muscle activity, is proposed. This model is supplemented by a numerical approach using finite element methods to assess the dynamic response of the integrated human-seat-controller-boat interaction system excited by wave loads or boat motions measured in full scale boat operation tests. The vibration control actuators are arranged between the seat and boat to reduce vibrations transmitted to the human body from the boat to obtain a comfortable ride condition

    A human body model for dynamic response analysis of an integrated human-seat-controller-high speed marine craft interaction system

    No full text
    Small boats are increasingly being operated at high speed in rough weather by organisations carrying out essential missions such as the military and rescue services. Crew and passengers on these boats are exposed to continuous vibration and impacts leading to reduced crew effectiveness, fatigue and the possibility of injury. In addition to this marine craft will soon fall under the jurisdiction of the European Union Directive 2002/44/EC on the protection of workers from vibration.To assess the possibility of injury and mitigate it at the design stage of a vessel a design tool is needed to assess the vibration levels on/in the human body while the boat operates in dynamic environments. A review of current human body models is presented and a new human body model, which allows for estimates of muscle activity, is proposed. This model is supplemented by a numerical approach using finite element methods to assess the dynamic response of the integrated human-seat-controller-boat interaction system excited by wave loads or boat motions measured in full scale boat operation tests. The vibration control actuators are arranged between the seat and boat to reduce vibrations transmitted to the human body from the boat to obtain a comfortable ride condition

    Optimisation of composite boat hulls using first principles and design rules

    No full text
    The design process is becoming increasingly complex with designers balancing societal, environmental and political issues. Composite materials are attractive to designers due to excellent strength to weight ratio, low corrosion and ability to be tailored to the application. One problem with composite materials can be the low stiffness that they exhibit and as such for many applications they are stiffened. These stiffened structures create a complex engineering problem by which they must be designed to have the lowest cost and mass and yet withstand loads. This paper therefore examines the way in which rapid assessment of stiffened boat structures can be performed for the concept design stage. Navier grillage method is combined with genetic algorithms to produce panels optimised for mass and cost. These models are constrained using design rules, in this case ISO 12215 and Lloyd's Register Rules for Special Service Craft. The results show a method that produces a reasonable stiffened structure rapidly that could be used in advanced concept design or early detailed design to reduce design time

    Characteristics of a series of high speed hard chine planing hulls - part II: performance in waves

    No full text
    An experimental investigation into the performance of high speed hard chine planing hulls in irregular waves has been conducted. A new series of models representative of current design practice was developed and tested experimentally. Measurements of the rigid body motions and accelerations were made at three speeds in order to assess the influence of fundamental design parameters on the seakeeping performance of the hulls and human factors performance of the crew, with an aim to provide designers with useful data. Response data, such as heave and pitch motions and accelerations, are presented as probability distributions due to the non-linear nature of high speed craft motions. Additionally statistical parameters for the experimental configurations tested are provided and the most relevant measures for crew performance discussed. Furthermore, an example of the use of these statistical parameters to evaluate the vibration dose value of the crew onboard a full scale high speed planingcraft is given. It is confirmed that at high speed craft motion leads to recommended maximum values of vibration dose value being exceeded after only short durations. In practice, therefore, mitigating strategies need to be developed and/or employed to reduce crew exposure to excessive whole body vibratio

    A plausible method for fatigue life prediction of boats in a data scarce environment

    No full text
    Within the marine world many boats are constructed from composite materials, that useclassification society rules to predict their strength. As these vessels age, fatigue and remaining lifetime are of considerable interest to owners and operators. This paper seeks to identify an appropriate S-N curve and produce an example lifetime calculation

    Dynamic study of adhesively bonded double lap composite joints

    No full text
    Composite structures may be subjected to high loading rates in naval applications.Hence, the composite assembly’s dynamic behaviour needs investigation. This paperpresents an investigation on the structural rate dependent behaviour of adhesivelybounded double lap joints. High rate tests showed ringing in the force/displacementcurves. An attempt was made to determine the origins of this phenomenon

    US Office of Naval Research, Solid Mechanics Program Review

    No full text
    The purpose of this extended abstract is to provide an overview of activities relating to performance assessments. The work described is wide ranging and not intended to provide a detailed account of any particular approach

    A rapid method for reliability analysis of composite tophat stiffened structures using a first principles method and design rules

    No full text
    Composite materials are increasingly being used within engineering, especially in low weight applications. A significant drawback that these materials exhibit is their variability. There is a growing trend towards stochastic analysis of marine structures and this is even more important for scenarios that have a high variability. To implement these new techniques it is important to be able to, rapidly and accurately, determine reliability during the design phase. Therefore, a reliability analysis, utilising a rapid implementation, has been performed on plates that have been designed using two different sets of design rules and a first principles method. The results show that whilst, under the limits investigated, the reliability of the design rules are slightly safer than those found using first principles; the sensitivity analysis shows that each of the design rules generates a different reaction from each variable, encouraging different types of structures through their idiosyncrasies. Furthermore the method shown allows a rapid analysis to be performed on complex composite structures in a relatively short time frame using either first principles methods or design rules
    • …
    corecore