6 research outputs found

    Quantitative characterization and modeling of the microstructure of solid oxide fuel cell composite electrodes

    Get PDF
    Three-phase porous composites containing electrolyte (ionic conductor), electronic conductor, and porosity phases are frequently used for solid oxide fuel cell (SOFC) electrodes. Performance of such electrodes is microstructure sensitive. Topological connectivity of the microstructural phases and total length of triple phase boundaries are the key microstructural parameters that affect the electrode performance. These microstructural attributes in turn depend on numerous process parameters including relative proportion, mean sizes, size distributions, and morphologies of the electrolyte and electronic conductor particles in the powder mix used for fabrication of the composites. Therefore, improvement of the performance of SOFC composite electrodes via microstructural engineering is a complex multivariate problem that requires considerable input from microstructure modeling and simulations. This dissertation presents a new approach for geometric modeling and simulation of three-dimensional (3D) microstructure of three-phase porous composites for SOFC electrodes and provides electrode performance optimization guidelines based on the parametric studies on the effects of processing parameters on the total length and topological connectivity of the triple phase boundaries. The model yields an equation for total triple phase boundary length per unit volume (LTPB) that explicitly captures the dependence of LTPB on relative proportion of electrolyte and electronic conductor phases; volume fraction of porosity; and mean size, coefficient of variation, and skewness of electrolyte and electronic conductor particle populations in the initial powder mix. The equation is applicable to electrolyte and electronic conductor particles of any convex shapes and size distributions. The model is validated using experimental measurements performed in this research as well as the measurements performed by other researchers. Computer simulations of 3D composite electrode microstructures have been performed to further validate the microstructure model and to study topological connectivity of the triple phase boundaries in 3D microstructural space. A detailed parametric analysis reveals that (1) non-equiaxed plate-like, flake-like, and needle-like electrolyte and electronic conductor particle shapes can yield substantially higher LTPB; (2) mono-sized electrolyte and electronic conductor powders lead to higher LTPB as compared to the powders having size distributions with large coefficients of variation; (3) LTPB is inversely proportional to the mean sizes of electrolyte and electronic conductor particles; (4) a high value of LTPB is obtained at the lowest porosity volume fraction that permits sufficient connectivity of the pores for gas permeability; and (5) LTPB is not sensitive to the relative proportion of electrolyte and electronic conductor phases in the composition regime of interest in composite electrode applications.Ph.D.Committee Chair: Gokhale, Arun; Committee Member: Gall, Kennith; Committee Member: Garmestani, Hamid; Committee Member: Jacob, Karl; Committee Member: Meilin, Li

    Assessing the Skill of Convection-Allowing Ensemble Forecasts of Precipitation by Optimization of Spatial-Temporal Neighborhoods

    No full text
    The current neighborhood probability (NP) method mainly considers the spatial displacement error in high-resolution precipitation forecasts, but the problem of the forecast time exceeding or lagging behind the observed field has not been properly solved. Therefore, a temporal factor was introduced into the NP method in this paper, and precipitation forecasts were evaluated in different spatial-temporal neighborhoods based on the improved NP method and fractions skill score (FSS), combined with the relative operating characteristic (ROC) curve. The results indicated that the forecasting accuracy of the ensemble forecast was higher than the control forecast. The neighborhood ensemble probability (NEP) and probability matched mean (PMM) methods were superior to the traditional ensemble mean (EM) method in forecasting heavy rainfall, which compensated for the limitations of the heavy rainfall forecasting ability of EM. For such squall line processes, a spatial scale of 15–45 km neighborhood radius could effectively rectify the displacement error of precipitation. There was a corresponding relationship between temporal scale and rainfall intensity in convective-scale precipitation forecast, so the temporal uncertainty of different levels of precipitation could be captured by different temporal scales. The spatial and temporal scales had interdependent influences on precipitation forecast effects, which could be affected by the intrinsic spatial-temporal scale of convective-scale weather systems. The improved NP method could simultaneously reflect the spatial and temporal uncertainties of convective-scale precipitation forecasts in high-resolution models, achieving a comprehensive assessment of spatial-temporal scale and providing probabilistic forecast results that match different levels of precipitation

    The Microbial Community Composition and Nitrogen Cycling Metabolic Potential of an Underground Reservoir in Rizhao, Shandong Province, China

    No full text
    Constructing underground reservoirs has emerged as a crucial strategy to address the shortage of fresh water in Rizhao, Shandong Province, China. However, the water quality, microbial community composition, and biogeochemical cycling of nutrients in underground reservoirs compared to raw water remain unknown. To unveil the characteristics of microbial community structures and their nitrogen cycling metabolic potential in coastal underground reservoirs, we utilized a functional gene array (GeoChip 5.0) in conjunction with high-throughput sequencing of 16S rRNA and 18S rRNA genes. Our findings indicate that the water quality in the underground reservoir exhibits a certain degree of eutrophication compared to raw water, with higher concentrations of TN, TP, NO3−N, NO2−-N, and Chl a, but lower concentrations of DO and NH4+-N. The alpha diversity of bacterial and microeukaryotic communities was significantly lower in the underground reservoir. The bacterial community presented a stronger correlation with environmental factors than the microeukaryotic community. Regarding the relative abundance of bacterial communities, Gammaproteobacteria dominated the bacterial community in raw water, while Gammaproteobacteria and Alphaproteobacteria dominated the bacterial community in underground reservoir water. Additionally, the relative abundance of Nitrospirae was noticeably higher in the underground reservoir water. Moreover, we found significantly higher sequence abundance of the archaea Thaumarchaeota in the underground reservoir. Furthermore, our analysis revealed that, except for the amoA functional gene, which significantly increased the metabolic potential of nitrification, the metabolic potential of other microbial nitrogen functional genes was significantly reduced. This reduction may contribute to the lower concentration of NH4+-N in the underground reservoir. This study provides a comprehensive understanding of the microbial community characteristics and their nitrogen cycling metabolic potential in underground reservoirs. It serves as a valuable reference for water source selection, the formulation of water quality assurance measures, and the construction and management of underground reservoirs for subsequent impounding

    Study of a new complex method for extraction of phenolic compounds from bio-oils

    No full text
    This paper reports a new extraction method on phenolic compounds separation from bio-oil. Through adding appropriate amount of calcium hydroxide into the bio-oil, using ammonia solution to adjust pH > 7 of the bio-oil, the complex was gradually generated in the bio-oil. Then the complex is filtered, and further dissolved by hydrochloric acid. High purity phenolic compounds collected from the dissolving solution are considered as crude products. In order to investigate the mechanism of the phenolic compounds extraction, a model bio-oil was prepared. In the process of phenol extraction from the model bio-oil, the complex formed was characterized by FT-IR and the phenols collected were detected by GC/MS. The results demonstrated that a complex formed instead of a salt of calcium guaiacol in the extraction process. Parameters investigated were the concentration of ammonia solution (1-6 mol/L), reaction temperature (20-70 °C) and reaction time (5-35 min). On the basis of the model bio-oil test, 4 mol/L of ammonia solution, 40°C of the reaction temperature, and 20 min of the reaction time were chosen as optimum reaction conditions. Testing of these conditions for 40 g of the crude bio-oil showed that the complex method extracted 2.9 g of phenolic compounds with the purity of 93.07%. Meanwhile, the whole extraction process does not discharge pollutants into the surrounding environment. ? 2014 Elsevier B.V. All rights reserved
    corecore