114 research outputs found

    Can Internet construction promote enterprise upgrading?

    Get PDF
    This paper investigates the impact of Internet infrastructure construction on enterprise transformation and upgrading and the underlying mechanisms using a progressive double difference model based on a quasi-natural experiment of the Chinese government’s "broadband China" policy by matching A-share listed companies and city panel data from 2008–2019 in Shanghai and Shenzhen. The conclusions show that the "broadband China" policy can significantly promote the transformation and upgrading of enterprises in pilot cities. However, its effect shows a diminishing marginal contribution, and the policy is more effective for traditional manufacturing industries during the implementation period. Enhancing human capital and reducing internal transaction costs are two important channels for Internet infrastructure construction to help enterprises transform and upgrade. Combined with the life cycle theory, we find that the "broadband China" policy has the most significant impact on changing and upgrading enterprises in the growth and maturity stages, especially those in the manufacturing industry, but not those in the maturity and decline stages of the service industry. Finally, a series of robustness tests using Monte Carlo simulation, entropy balance method, and instrumental variables method, excluding other factors, show that the findings are still robust

    The PstI/RsaI and DraI polymorphisms of CYP2E1 and head and neck cancer risk: a meta-analysis based on 21 case-control studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>CYP2E1 </it>encodes a member of the cytochrome P450 superfamily of enzymes which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of cancer. The PstI/RsaI and DraI polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of head and neck cancer, but the results are conflicting.</p> <p>Methods</p> <p>We performed a meta-analysis using 21 eligible case-control studies with a total of 4,951 patients and 6,071 controls to summarize the data on the association between the <it>CYP2E1 </it>PstI/RsaI and DraI polymorphism and head and neck cancer risk, especially by interacting with smoking or alcohol.</p> <p>Results</p> <p>Compared with the wild genotype, the OR was 1.96 (95% CI: 1.33-2.90) for PstI/RsaI and 1.56 (95% CI: 1.06-2.27) for DraI polymorphism respectively. When stratified according to ethnicity, the OR increased in the Asians for both polymorphisms (OR = 2.04, 95% CI: 1.32-3.15 for PstI/RsaI; OR = 2.04, 95% CI: 1.27-3.29 for DraI), suggesting that the risk is more pronounced in Asians.</p> <p>Conclusion</p> <p>Our meta-analysis suggests that individuals with the homozygote genotypes of PstI/RsaI or DraI polymorphism might be associated with an increased risk of head and neck cancer, especially in Asians.</p

    Crystal structures of γ-glutamylmethylamide synthetase provide insight into bacterial metabolism of oceanic monomethylamine

    Get PDF
    Monomethylamine (MMA) is an important climate-active oceanic trace gas and ubiquitous in the oceans. The γ-glutamylmethylamide synthetase (GmaS) catalyzes the conversion of MMA to γ-glutamylmethylamide (GMA), the first step in MMA metabolism in many marine bacteria. The gmaS gene occurs in ~23% of microbial genomes in the surface ocean and is a validated biomarker to detect MMA-utilizing bacteria. However, the catalytic mechanism of GmaS has not been studied due to the lack of structural information. Here, the GmaS from Rhodovulum sp. 12E13 (RhGmaS) was characterized, and the crystal structures of apo-RhGmaS and RhGmaS with different ligands in five states were solved. Based on structural and biochemical analyses, the catalytic mechanism of RhGmaS was explained. ATP is first bound in RhGmaS, leading to a conformational change of a flexible loop (Lys287-Ile305), which is essential for the subsequent binding of glutamate. During the catalysis of RhGmaS, the residue Arg312 participates in polarizing the γ-phosphate of ATP and in stabilizing the γ-glutamyl phosphate intermediate; Asp177 is responsible for the deprotonation of MMA, assisting the attack of MMA on γ-glutamyl phosphate to produce a tetrahedral intermediate; and Glu186 acts as a catalytic base to abstract a proton from the tetrahedral intermediate to finally generate GMA. Sequence analysis suggested that the catalytic mechanism of RhGmaS proposed in this study has universal significance in bacteria containing GmaS. Our results provide novel insights into MMA metabolism, contributing to a better understanding of MMA catabolism in global carbon and nitrogen cycles

    Metatranscriptomic analysis revealed Prevotella as a potential biomarker of oropharyngeal microbiomes in SARS-CoV-2 infection

    Get PDF
    Background and objectivesDisease severity and prognosis of coronavirus disease 2019 (COVID-19) disease with other viral infections can be affected by the oropharyngeal microbiome. However, limited research had been carried out to uncover how these diseases are differentially affected by the oropharyngeal microbiome of the patient. Here, we aimed to explore the characteristics of the oropharyngeal microbiota of COVID-19 patients and compare them with those of patients with similar symptoms.MethodsCOVID-19 was diagnosed in patients through the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Characterization of the oropharyngeal microbiome was performed by metatranscriptomic sequencing analyses of oropharyngeal swab specimens from 144 COVID-19 patients, 100 patients infected with other viruses, and 40 healthy volunteers.ResultsThe oropharyngeal microbiome diversity in patients with SARS-CoV-2 infection was different from that of patients with other infections. Prevotella and Aspergillus could play a role in the differentiation between patients with SARS-CoV-2 infection and patients with other infections. Prevotella could also influence the prognosis of COVID-19 through a mechanism that potentially involved the sphingolipid metabolism regulation pathway.ConclusionThe oropharyngeal microbiome characterization was different between SARS-CoV-2 infection and infections caused by other viruses. Prevotella could act as a biomarker for COVID-19 diagnosis and of host immune response evaluation in SARS-CoV-2 infection. In addition, the cross-talk among Prevotella, SARS-CoV-2, and sphingolipid metabolism pathways could provide a basis for the precise diagnosis, prevention, control, and treatment of COVID-19

    A novel ATP dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is an abundant and ubiquitous organosulfur molecule in marine environments with important roles in global sulfur and nutrient cycling. Diverse DMSP lyases in some algae, bacteria and fungi cleave DMSP to yield gaseous dimethyl sulfide (DMS), an infochemical with important roles in atmospheric chemistry. Here we identified a novel ATP-dependent DMSP lyase, DddX. DddX belongs to the acyl-CoA synthetase superfamily and is distinct from the eight other known DMSP lyases. DddX catalyses the conversion of DMSP to DMS via a two-step reaction: the ligation of DMSP with CoA to form the intermediate DMSP-CoA, which is then cleaved to DMS and acryloyl-CoA. The novel catalytic mechanism was elucidated by structural and biochemical analyses. DddX is found in several Alphaproteobacteria, Gammaproteobacteria and Firmicutes, suggesting that this new DMSP lyase may play an overlooked role in DMSP/DMS cycles

    Structure of Vibrio collagenase VhaC provides insight into the mechanism of bacterial collagenolysis

    Get PDF
    The collagenases of Vibrio species, many of which are pathogens, have been regarded as an important virulence factor. However, there is little information on the structure and collagenolytic mechanism of Vibrio collagenase. Here, we report the crystal structure of the collagenase module (CM) of Vibrio collagenase VhaC and the conformation of VhaC in solution. Structural and biochemical analyses and molecular dynamics studies reveal that triple-helical collagen is initially recognized by the activator domain, followed by subsequent cleavage by the peptidase domain along with the closing movement of CM. This is different from the peptidolytic mode or the proposed collagenolysis of Clostridium collagenase. We propose a model for the integrated collagenolytic mechanism of VhaC, integrating the functions of VhaC accessory domains and its collagen degradation pattern. This study provides insight into the mechanism of bacterial collagenolysis and helps in structure-based drug design targeting of the Vibrio collagenase

    Exploring Off-Targets and Off-Systems for Adverse Drug Reactions via Chemical-Protein Interactome — Clozapine-Induced Agranulocytosis as a Case Study

    Get PDF
    In the era of personalized medical practice, understanding the genetic basis of patient-specific adverse drug reaction (ADR) is a major challenge. Clozapine provides effective treatments for schizophrenia but its usage is limited because of life-threatening agranulocytosis. A recent high impact study showed the necessity of moving clozapine to a first line drug, thus identifying the biomarkers for drug-induced agranulocytosis has become important. Here we report a methodology termed as antithesis chemical-protein interactome (CPI), which utilizes the docking method to mimic the differences in the drug-protein interactions across a panel of human proteins. Using this method, we identified HSPA1A, a known susceptibility gene for CIA, to be the off-target of clozapine. Furthermore, the mRNA expression of HSPA1A-related genes (off-target associated systems) was also found to be differentially expressed in clozapine treated leukemia cell line. Apart from identifying the CIA causal genes we identified several novel candidate genes which could be responsible for agranulocytosis. Proteins related to reactive oxygen clearance system, such as oxidoreductases and glutathione metabolite enzymes, were significantly enriched in the antithesis CPI. This methodology conducted a multi-dimensional analysis of drugs' perturbation to the biological system, investigating both the off-targets and the associated off-systems to explore the molecular basis of an adverse event or the new uses for old drugs
    corecore