43 research outputs found

    Stepped-height ridge waveguide MQW polarization mode converter monolithically integrated with sidewall grating DFB laser

    Full text link
    We report the first demonstration of a 1555 nm stepped-height ridge waveguide polarization mode converter monolithically integrated with a side wall grating distributed-feedback (DFB) laser using the identical epitaxial layer scheme. The device shows stable single longitudinal mode (SLM) operation with the output light converted from TE to TM polarization with an efficiency of >94% over a wide range of DFB injection currents (IDFB) from 140 mA to 190 mA. The highest TM mode purity of 98.2% was obtained at IDFB=180 mA. A particular advantage of this device is that only a single step of metalorganic vapor-phase epitaxy and two steps of III-V material dry etching are required for the whole integrated device fabrication, significantly reducing complexity and cost

    Regrowth-free AlGaInAs MQW polarization controller integrated with sidewall grating DFB laser

    Full text link
    We report an AlGaInAs multiple quantum well integrated source of polarization controlled light consisting of a polarization mode converter PMC, differential phase shifter(DPS), and a side wall grating distributed-feedback DFB laser. We demonstrate an asymmetrical stepped-height ridge waveguide PMC to realize TE to TM polarization conversion and a symmetrical straight waveguide DPS to enable polarization rotation from approximately counterclockwise circular polarization to linear polarization. Based on the identical epitaxial layer scheme, all of the PMC, DPS, and DFB laser can be integrated monolithically using only a single step of metalorganic vapor phase epitaxy and two steps of III V material dry etching. For the DFB-PMC device, a high TE to TM polarization conversion efficiency 98% over a wide range of DFB injection currents is reported at 1555 nm wavelength. For the DFB-PMC-DPS device, a 60 degree rotation of the Stokes vector was obtained on the Poincar\'e sphere with a range of bias voltage from 0 V to -4.0 V at IDFB is 170 mA.Comment: arXiv admin note: text overlap with arXiv:2210.1051

    Scattering Field Enhanced Biosensing Based on Sub-wavelength Split-ring Plasmonic Cavity With High Q-factor

    Get PDF
    Plasmonic structures are widely used in modern biosensor design. various plasmonic resonant cavities could efficiently achieve a high Q-factor, improving the local field intensity to enhance photoluminescence or SERS (Surface-Enhanced Raman Scattering) of small molecules. Also, the combination between virus-like particles and plasmonic structures could significantly influence the scattering spectrum and field, which is utilized as a method for biological particle detection. In this paper, we designed one kind of gold plasmonic cavity with the shape of a split-ring. An edge gap and a bonus center bulge are introduced in the split-ring structure. Our simulation is based on Finite Difference Time Domain (FDTD) method. Polarization Indirect Microscopic Imaging (PIMI) technique is used here to detect far-field mode distribution under the resonant wavelength. The simulation results demonstrate resonant peaks in the visible spectrum at about 600 nm with a Q-factor reaches to 74. Localized hot spots are generated by an edge dipole mode and a cavity hexapole mode at resonant wavelength, which is according to dark points in the PIMI sinδ image. Also, the split-ring cavity shows a sensitivity when combined with biological particles. The scattering distribution is evidently changed as a result of energy exchange between particles and split-ring cavity, indicating a promising possibility for biosensing

    An optically pumped atomic clock based on a continuous slow cesium beam

    Get PDF
    Herein, we report the scheme of an optically pumped atomic clock based on a cold cesium atomic beam source. We propose the laser system and physical mechanism of this atomic clock, wherein the atomic beam travels in an upper parabolic trajectory, thereby eliminating the light shift effect. In the experiments, when the length of the free evolution region was 167 mm, the line width of the Ramsey fringe was 37 Hz. When the expected signal-to-noise ratio of the Ramsey fringe that can be achieved is 36,000, the expected short-term frequency stability is about 3.6 × 10–14/√τ, which is significantly higher than that of a conventional optically pumped cesium clock of similar volume

    Stepped-height ridge waveguide MQW polarization mode converter monolithically integrated with sidewall grating DFB laser

    Get PDF
    We report the first demonstration of a 1555 nm stepped-height ridge waveguide polarization mode converter monolithically integrated with a side wall grating distributed-feedback (DFB) laser using the identical epitaxial layer scheme. The device shows stable single longitudinal mode (SLM) operation with the output light converted from TE to TM polarization with an efficiency of >94% over a wide range of DFB injection currents (IDFB) from 140 mA to 190 mA. The highest TM mode purity of 98.2% was obtained at IDFB=180 mA. A particular advantage of this device is that only a single step of metalorganic vapor-phase epitaxy and two steps of III-V material dry etching are required for the whole integrated device fabrication, significantly reducing complexity and cost

    Sub-wavelength visualization of near-field scattering mode of plasmonic nano-cavity in the far-field

    Get PDF
    Spatial visualization of mode distribution of light scattering from plasmonic nanostructures is of vital importance for understanding the scattering mechanism and applications based on these plasmonic nanostructures. A long unanswered question in how the spatial information of scattered light from a single plasmonic nanostructure can be recovered in the far-field, under the constraints of the diffraction limit of the detection or imaging optical system. In this paper, we reported a theoretical model on retrieving local spatial information of scattered light by plasmonic nanostructures in a far-field optical imaging system. In the far-field parametric sin δ images, singularity points corresponding to near-field hot spots of the edge mode and the gap mode were resolved for gold ring and split rings with subwavelength diameters and feature sizes. The experimental results were verified with Finite Difference Time Domain (FDTD) simulation in the near-field and far-field, for the edge mode and the gap mode at 566 nm and 534 nm, respectively. In sin δ image of split-ring, two singularity points associated with near-field hot spots were visualized and resolved with the characteristic size of 90 and 100 nm, which is far below the diffraction limit. The reported results indicate the feasibility of characterizing the spatial distribution of scattering light in the far-field and with sub-wavelength resolution for single plasmonic nanostructures with sub-wavelength feature sizes

    Characterization of deep sub-wavelength nanowells by imaging the photon state scattering spectra

    Get PDF
    Optical-matter interactions and photon scattering in a sub-wavelength space are of great interest in many applications, such as nanopore-based gene sequencing and molecule characterization. Previous studies show that spatial distribution features of the scattering photon states are highly sensitive to the dielectric and structural properties of the nanopore array and matter contained on or within them, as a result of the complex optical-matter interaction in a confined system. In this paper, we report a method for shape characterization of subwavelength nanowells using photon state spatial distribution spectra in the scattering near field. Far-field parametric images of the near-field optical scattering from sub-wavelength nanowell arrays on a SiN substrate were obtained experimentally. Finite-difference time-domain simulations were used to interpret the experimental results. The rich features of the parametric images originating from the interaction of the photons and the nanowells were analyzed to recover the size of the nanowells. Experiments on nanoholes modified with Shp2 proteins were also performed. Results show that the scattering distribution of modified nanoholes exhibits significant differences compared to empty nanoholes. This work highlights the potential of utilizing the photon status scattering of nanowells for molecular characterization or other virus detection applications

    Label-free sensing below the sub-diffraction limit of virus-like particles by wide-field photon state parametric imaging of a gold nanodot array

    Get PDF
    A parallel four-quadrant sensing method utilizing a specially designed gold nanodot array is created for sensing virus-like particles with sub-diffraction limit size (~100 nm) in a wide-field image. Direct label-free sensing of virus using multiple four-quadrant sensing channel in parallel in a wide-field view enables the possibility of high-throughput onsite screening of virus
    corecore