9 research outputs found
Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis
High water consumption is a major environmental problem that the pulp and paper industry is facing. Ultrafiltration (UF) can be used to remove the dissolved and colloidal substances (DCS) concentrated during the recycling of white water (the process water) to facilitate the reuse of white water and reduce fresh water consumption. However, membrane fouling limits the application of UF in this industry. In this study, super-clear filtrate obtained from a fine paper mill was purified with a polyethersulfone (PES) ultrafiltration membrane to evaluate the reuse performance of the ultrafiltrate. The membrane foulants were characterized by scanning electron microscopy, energy-dispersive spectrophotometry, attenuated total reflection-fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. The results indicate that the retention rate of stock and the strength properties of paper increased when the ultrafiltrate was reused in the papermaking process compared to when super-clear filtrate was used. The reversible membrane foulants during ultrafiltration accounted for 85.52% of the total foulants and primarily originated from retention aids, drainage aids, and wet strength resins, while the irreversible adsorptive foulants accounted for 14.48% and mostly came from sizing agents, coating chemicals, and others. Moreover, the presence of dissolved multivalent metal ions, especially Ca2+, accelerated membrane fouling
Multiscale analysis of fine slag from pulverized coal gasification in entrained-flow bed
Abstract Fine slag (FS) is an unavoidable by-product of coal gasification. FS, which is a simple heap of solid waste left in the open air, easily causes environmental pollution and has a low resource utilization rate, thereby restricting the development of energy-saving coal gasification technologies. The multiscale analysis of FS performed in this study indicates typical grain size distribution, composition, crystalline structure, and chemical bonding characteristics. The FS primarily contained inorganic and carbon components (dry bases) and exhibited a "three-peak distribution" of the grain size and regular spheroidal as well as irregular shapes. The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds. The carbon constituents were primarily amorphous in structure, with a certain degree of order and active sites. C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures. The inorganic components, constituting 90% of the total sample, were primarily silicon, aluminum, iron, and calcium. The inorganic components contained Si–O-Si, Si–O–Al, Si–O, SO4 2−, and Fe–O bonds. Fe 2p XPS spectrum could be deconvoluted into Fe 2p 1/2 and Fe 2p 3/2 peaks and satellite peaks, while Fe existed mainly in the form of Fe(III). The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future
Type‐II Dirac Nodal Lines in a Double‐Kagome‐Layered Semimetal
Abstract Lorentz‐violating type‐II Dirac nodal line semimetals (DNLSs), hosting curves of band degeneracy formed by two dispersion branches with the same sign of slope, represent a novel state of matter. While being studied extensively in theory, convincing experimental evidence of type‐II DNLSs remain elusive. Recently, vanadium‐based kagome materials have emerged as a fertile ground to study the interplay between lattice symmetry and band topology. This work studies the low‐energy band structure of double‐kagome‐layered CsV8Sb12 and identifies it as a scarce type‐II DNLS protected by mirror symmetry. This work observes multiple DNLs consisting of type‐II Dirac cones close to or almost at the Fermi level via angle‐resolved photoemission spectroscopy (ARPES), which provides an electronic explanation for the nonsaturating magnetoresistance effect as observed. First‐principles theory analyses show that spin‐orbit coupling only opens a small gap, resulting in effectively gapless ARPES spectra, yet generating large spin Berry curvature. These type‐II DNLs, together with the interaction between a low‐energy van Hove singularity and quasi‐one‐dimensional band as observed in the same material, suggest CsV8Sb12 as an ideal platform for exploring novel transport properties
Emergence of quantum confinement in topological kagome superconductor CsV3Sb5
Abstract Quantum confinement is a restriction on the motion of electrons in a material to specific region, resulting in discrete energy levels rather than continuous energy bands. In certain materials, quantum confinement could dramatically reshape the electronic structure and properties of the surface with respect to the bulk. Here, in the recently discovered kagome superconductors CsV3Sb5, we unveil the dominant role of quantum confinement in determining their surface electronic structure. Combining angle-resolved photoemission spectroscopy (ARPES) measurement and density-functional theory simulation, we report the observations of two-dimensional quantum well states due to the confinement of bulk electron pocket and Dirac cone to the nearly isolated surface layer. The theoretical calculations on the slab model also suggest that the ARPES observed spectra are almost entirely contributed by the top two layers. Our results not only explain the disagreement of band structures between the recent experiments and calculations, but also suggest an equally important role played by quantum confinement, together with strong correlation and band topology, in shaping the electronic properties of this material