44 research outputs found
Ghost direction detection and other innovations for Ms. Pac-Man
Ms. Pac-Man was developed in the 1980s, becoming one of the most popular arcade games of its time. It still has a significant following today and has recently attracted the attention of artificial intelligence researchers, in part, due to the fact that the agent must react in real time in order to navigate its way through the maze. This pape
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
Efficient and inexpensive MPCVD method to synthesize Co3O4/MoS2 heterogeneous composite materials with high stability for supercapacitors
Large-sized metal oxide particles have the potential to constitute cheap, high-performance, and high-stability supercapacitor electrode materials. Herein, the marketable large-sized Co3O4 particles (~6 [my]m) as the starting raw material, inexpensive Co3O4/MoS2 core-shell heterogeneous composites have been one-step fabricated via an improvised MPCVD system modified by a domestic microwave oven. After that, the surface morphology, composition structure, and valence state of elements were analyzed to the confirmed successful synthesis of MoS2 on the surface of Co3O4. Besides, the performance was tested by cyclic voltammetry and galvanostatic charge-discharge method. The results show that the synergistic effect of Co3O4 core and MoS2 shell can effectively improve the material's electrochemical performance. The specific capacitance of Co3O4/MoS2 composite can reach 337 F g-1 with a current density of 0.5 A g-1, which is six times more than the raw Co3O4 powder. Furthermore, it could maintain 93.6% of the initial specific capacitance after 2000 charges and discharges. Finally, the mechanism of material performance improvement is proposed
Effect of Hot Streak on Aerothermal Performance of High Pressure Turbine Guide Vane under Different Swirl Intensities
In advanced civil aero-engine, the gas exiting combustor typically features hot streak (HS) and swirl that affect the aerothermal performances of the high pressure (HP) nozzle guide vane (NGV). The purpose of this paper is to study the influences of HS on HP NGV aerothermal behaviors under swirl with various intensities. The numerical investigations were conducted on the first NGV of GE-E3 HP turbine. Four swirl intensities (|SN| = 0, 0.25, 0.50, 0.75) and two swirl orientations (positive and negative) were considered. The result indicates that the relative strengths between the swirl and its induced radial pressure gradient dominate the flow patterns on vane surfaces. Thus, the diverse streamlines distributions appear on the surfaces and the dominated factor on each surface does not vary with swirl intensity. The swirl redistributes the cold and hot fluid and thus generates the relatively hot oblique strip and cold region at the upstream of vane. The heat load on the vane that is not directly impinged by HS is dictated by the radial migration of the fluids originating from the regions aforementioned at |SN| = 0.25 and 0.50. However, at |SN| = 0.75, the transverse movement of HS due to the intense swirl causes additional thermal load. The heat load on the vane that faces HS is mainly determined by the radial migration of HS. The swirl alters the heat transfer distribution on vane surfaces remarkably. With positive swirl, the heat transfer coefficients at the lower span of suction side and pressure side are enhanced and weakened respectively. As expected, the opposite trends are observed in the negative swirl case. Swirl also affects boundary layer transition, and then affecting heat transfer. Positive and negative swirls both advance the transition on the suction side of vane directly impinged by the swirl, and with the increase of swirl intensity, transition onset shifts toward upstream
Comparing the diagnostic efficacy of [18F]FDG PET/CT and [18F]FDG PET/MRI for detecting bone metastases in breast cancer: a meta-analysis
This meta-analysis aimed to evaluate the comparative diagnostic efficacy of [18F]FDG PET/CT and [18F] FDG PET/MRI in detecting bone metastases in breast cancer patients
d-Amino Acid Position Influences the Anticancer Activity of Galaxamide Analogs: An Apoptotic Mechanism Study
Galaxamide, an extract from Galaxaura filamentosa, is a cyclic pentapeptide containing five l-leucines. Due to the particular cyclic structure and the excellent anticancer activity, synthesis of Galaxamide and its analogs and their subsequent bio-applications have attracted great attention. In the present work, we synthesized six Galaxamide analogs by replacing one of the l-leucines with phenylalanine and varying the d-amino acid position. The anticancer effect of the synthesized Galaxamide analogs was tested against four in vitro human cancer cell lines, human hepatocellular cells (HepG2), human breast cancer cell (MCF-7), human breast adenocarcinoma cells (MDA-MB-435) and a human cervical carcinoma cell line (Hela). Results showed that Galaxamide analogs with different d-amino acid positions displayed distinct anticancer potential. The Galaxamide analog containing d-amino acid at position 5 (Analog-6) presented the strongest anticancer activity. The mechanism study revealed that Analog-6 could cause the early apoptosis of HepG2 cells by inhibiting their growth in the sub-G1 stage of the cell cycle and induce the chromatin condensation and fragmentation, which can be seen as 68% of HepG2 cells inhibited in the sub-G1 stage. Moreover, a mitochondria-mediated pathway was found to be involved in the apoptotic process of Analog-6 on HepG2 cells