253 research outputs found

    Possible atomic structures for the sub-bandgap absorption of chalcogen hyperdoped silicon

    Full text link
    Single-crystal silicon wafers were hyperdoped respectively by sulfur, selenium, and tellurium element using ion implantation and nanosecond laser melting. The hyperdoping of such chalcogen elements endowed the treated silicon with a strong and wide sub-bandgap light absorptance. When these hyperdoped silicons were thermally annealed even at low temperatures (such as 200~400 oC), however, this extra sub-bandgap absorptance began to attenuate. In order to explain this attenuation of absorptance, alternatively, we consider it corresponding to a chemical decomposition reaction from optically absorbing structure to non-absorbing structure, and obtain a very good fitting to the attenuated absorptances by using Arrhenius equation. Further, we extract the reaction activation energies from the fittings and they are 0.343(+/- 0.031) eV for S-, 0.426(+/-0.042) eV for Se-, and 0.317(+/-0.033) eV for Te-hyperdoped silicon, respectively. We discuss these activation energies in term of the bond energies of chalcogen-Si metastable bonds, and finally suggest that several high-energy interstitial sites instead of the substitutional site, are very possibly the atomic structures that are responsible for the sub-bandgap absorptance of chalcogen hyperdoped silicon.Comment: 18 pages, 3 figures, 1 tabl

    Efficiency and Ecological Risks of Reducing Soil pH during Thlaspi caerulescens Phytoextraction of Cadmium and Zinc

    Get PDF
    The major aims of this research were to determine whether reducing soil pH can enhance phytoextraction and to examine the ecological risks of reducing pH. Two soils differing in Cd and Zn concentrations were used and adjusted to 5 or 6 different pH levels ranging from 7.27 to 4.74 and seeded with a hyperaccumulator of Cd and Zn, Thlaspi caerulescens. Plants were harvested after six months, the pH were restored to above 6.5, incubated for 6 months. Soils were analyzed for biological activities and microbial population changes after both pH adjustments. Reducing pH significantly (p=0.05) enhanced plant metal uptake. For the high metal soil, plant grew best at the lowest pH treatment (4.74) and the highest metal concentration was at the second lowest pH treatment (5.27). For the low metal soil, due to low pH induced Al and Mn toxicity, plant growth and metal uptake were highest at the intermediate pH level (6.07). Metal sequential extraction results further verified that reducing pH redistributed Cd and Zn among five fractions. The most soluble metal form (F1) was greatly increased. In addition, T. caerulescens was able to differentially utilize Cd in all 5 fractions while it could only access Zn from the F1 and F2 pools. Reducing soil pH significantly reduced a number of soil biological activities and shifted the community structure at different levels. Generally, soil biological activities were more sensitive than soil microbial populations to pH change. Good indicators of soil pH status were acid phosphatase activity, alkaline phosphatase activity, acid to alkaline phosphatase activity ratio, arylsulphatase, nitrification potential, soil microbial biomass C and N, and population of rhizobium. After raising pH to > 6.5, negatively impacted soil parameters were partially restored to original levels. Soil biological activities showed lower recovery than soil microbial populations. The threshold pHs were 6.1 and 5.3 for low and high metal soils, respectively. Above this value, most soil biological activities and all microbial populations returned to background levels within a short period

    Electric-field Control of Magnetism with Emergent Topological Hall Effect in SrRuO3 through Proton Evolution

    Full text link
    Ionic substitution forms an essential pathway to manipulate the carrier density and crystalline symmetry of materials via ion-lattice-electron coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both carrier density and crystalline symmetry through the ionic liquid gating induced protonation. The insertion of protons electron-dopes SrRuO3, leading to an exotic ferromagnetic to paramagnetic phase transition along with the increase of proton concentration. Intriguingly, we observe an emergent topological Hall effect at the boundary of the phase transition as the consequence of the newly-established Dzyaloshinskii-Moriya interaction owing to the breaking of inversion symmetry in protonated SrRuO3 with the proton compositional film-depth gradient. We envision that electric-field controlled protonation opens a novel strategy to design material functionalities

    Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells

    Get PDF
    Dispersive SnS2 colloidal quantum dots have been synthesized via hot-injection method. Hybrid photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3",7"dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline SnS2 quantum dots as electron acceptor have been studied. Photoluminescence measurement has been performed to study the surfactant effect on the excitons splitting process. The photocurrent of solar cells with the hybrid depends greatly on the ligands exchange as well as the device heat treatment. AFM characterization has demonstrated morphology changes happening upon surfactant replacement and annealing, which can explain the performance variation of hybrid solar cells

    Plasmonic Nanoparticles with Quantitatively Controlled Bioconjugation for Photoacoustic Imaging of Live Cancer Cells

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135410/1/advs216_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135410/2/advs216-sup-0001-S1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135410/3/advs216.pd

    Observation of Quantum Griffiths Singularity and Ferromagnetism at Superconducting LaAlO3/SrTiO3(110) Interface

    Full text link
    Diverse phenomena emerge at the interface between band insulators LaAlO3 and SrTiO3, such as superconductivity and ferromagnetism, showing an opportunity for potential applications as well as bringing fundamental research interests. Particularly, the two-dimensional electron gas formed at LaAlO3/SrTiO3 interface offers an appealing platform for quantum phase transition from a superconductor to a weakly localized metal. Here we report the superconductor-metal transition in superconducting two-dimensional electron gas formed at LaAlO3/SrTiO3(110) interface driven by a perpendicular magnetic field. Interestingly, when approaching the quantum critical point, the dynamic critical exponent is not a constant but a diverging value, which is a direct evidence of quantum Griffiths singularity raised from quenched disorder at ultralow temperatures. Furthermore, the hysteretic property of magnetoresistance was firstly observed at LaAlO3/SrTiO3(110) interfaces, which suggests potential coexistence of superconductivity and ferromagnetism

    Efficient organic solar cells enabled by simple non-fused electron donors with low synthetic complexity

    Get PDF
    Abstract Fused‐ring electron donors boost the efficiency of organic solar cells (OSCs), but they suffer from high cost and low yield for their large synthetic complexity (SC > 30%). Herein, the authors develop a series of simple non‐fused‐ring electron donors, PF1 and PF2, which alternately consist of furan‐3‐carboxylate and 2,2′‐bithiophene. Note that PF1 and PF2 present very small SC of 9.7% for their inexpensive raw materials, facile synthesis, and high synthetic yield. Compared to their all‐thiophene‐backbone counterpart PT‐E, two new polymers feature larger conjugated plane, resulting in higher hole mobility for them, especially a value up to ≈10 −4 cm 2 V −1 ·s for PF2 with longer alkyl side chain. Meanwhile, PF1 and PF2 exhibit larger dielectric constant and deeper electronic energy level versus PT‐E. Benefiting from the better physicochemical properties, the efficiencies of PF1‐ and PF2‐based devices are improved by ≈16.7% and ≈71.3% relative to that PT‐E‐based devices, respectively. Furthermore, the optimized PF2‐based devices with introducing PC 71 BM as the third component deliver a higher efficiency of 12.40%. The work not only indicates that furan‐3‐carboxylate is a simple yet efficient building block for constructing non‐fused‐ring polymers but also provides a promising electron donor PF2 for the low‐cost production of OSCs.A simple structure non‐fused‐ring electron donor PF2 alternately consisting of furan‐3‐carboxylate and 2,2′‐bithiophene presents very small synthetic complexity of 9.7% as well as low material cost of ≈19.0 $ g −1 . More importantly, PF2 delivers a high efficiency of 12.4% coupled with strong operational stability. imag
    • …
    corecore