21 research outputs found
Millimeter Wave Full-Duplex Networks: MAC Design and Throughput Optimization
Full-duplex (FD) technique can remarkably boost the network capacity in the
millimeter wave (mmWave) bands by enabling simultaneous transmission and
reception. However, due to directional transmission and large bandwidth, the
throughput and fairness performance of a mmWave FD network are affected by
deafness and directional hidden-node (HN) problems and severe residual
self-interference (RSI). To address these challenges, this paper proposes a
directional FD medium access control protocol, named DFDMAC to support typical
directional FD transmission modes by exploiting FD to transmit control frames
to reduce signaling overhead. Furthermore, a novel busy-tone mechanism is
designed to avoid deafness and directional HN problems and improve the fairness
of channel access. To reduce the impact of RSI on link throughput, we formulate
a throughput maximization problem for different FD transmission modes and
propose a power control algorithm to obtain the optimal transmit power.
Simulation results show that the proposed DFDMAC can improve the network
throughput and fairness by over 60% and 32%, respectively, compared with the
existing MAC protocol in IEEE 802.11ay. Moreover, the proposed power control
algorithm can effectively enhance the network throughput
Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo
In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic “hotspot” regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo
Dynamic optimization of tracked vehicle power train based on torsional vibration analysis
Aiming at the vehicle power train, system dynamic optimization is profoundly studied based on the system torsional vibration characteristics analysis. First, based on the concentrated mass method, the general torsional vibration model of vehicle power train is established and solved after parameters’ (inertia, stiffness, and damping) matrix and mathematic constraint conditions are acquired. Furthermore, both free vibration and forced vibration characteristics are analyzed. Second, the effects of the coupling stiffness on the dynamics behaviors of power train are thoroughly analyzed. The sensitivity analysis procedure is explored. And sensitivity models of both free and forced vibration feature parameters are deduced. Finally, dynamic optimization theory model and program are constructed based on genetic algorithm. The optimization results indicate that the proposed optimization method could contribute to the sharp attenuation of system torsional vibration
CFRP Strengthening and Rehabilitation of Inner Corroded Steel Pipelines under External Pressure
The objective of this study was to investigate the performance of pipelines repaired with carbon-fibre-reinforced polymer (CFRP) under external pressure. The repaired pipeline experienced defects in terms of thinning of its local inner wall. The three-dimensional finite element method was used to analyse the collapse pressure of repaired pipes with internal corrosion defects. The traction–separation law and interlaminar damage criterion were applied to simulate the collapse process of repaired pipes. The results show that the collapse pressure of the composite-repaired pipe increased and the CFRP significantly reduced the strain in the defect region. It was observed that the ovality of the corrosion defect region was reduced and that the repair effectiveness mainly depended on the length, thickness, and interlayer cohesion
Spatio-Temporal Analysis of Dust Storm Activity in Chryse Planitia Using MGS-MOC Observations from Mars Years 24–28
Dust storms, observed in all seasons, are among the most momentous of Mars’ atmospheric activities. The Entry–Descent–Landing (EDL) activity of a Martian landing mission is influenced by local atmospheric conditions, especially the probability of dust storm activity. Chryse Planitia, featuring many of the largest and most prominent outflow channels and possible mud volcanoes, is an important target site for current and future Mars landing missions. It is of great significance to understand that a Mars landing probe may encounter a dust storm situation during EDL season in the Chryse Planitia. In this study, based on four Martian years, Mars Orbiter Camera (MOC) Mars Daily Global Maps (MDGMs), 1172 dust storms were identified within Chryse’s 1600 km-radius ring. Secondly, the daily mean dust storm probability was calculated, binned by 1° of solar longitude in the Chryse landing area. The two active periods of dust storm activity are Ls = 177–239° and Ls = 288–4°, with an average daily mean dust storm probability of 9.5% and 4.1%. Dust storm activity frequency is closely interrelated with the seasonal ebb and flow of the north polar ice cap; consequently, most dust storms occur in either the cap’s growth or recession phase. We divided the Chryse landing area into square grids of 0.5° and computed the average probability of dust storm occurrence in each grid, which ranged from 0.19% to 2.42%, with an average of 1.22%. The dust storm activity probability in space was also inhomogeneous—low in the west and south but high in the east and north—which was mainly affected by the origin and the path of dust storm sequences. Based on empirical orthogonal function (EOF) analysis of storms in the Chryse area, 40.5% are cap-edge storms in the northern hemisphere. Finally, we concluded that the preferred time of a Mars landing mission is Ls = 18–65° in the Chryse Planitia, and three preferred landing areas were selected with low dust storm probability
Spatio-Temporal Analysis of Dust Storm Activity in Chryse Planitia Using MGS-MOC Observations from Mars Years 24–28
Dust storms, observed in all seasons, are among the most momentous of Mars’ atmospheric activities. The Entry–Descent–Landing (EDL) activity of a Martian landing mission is influenced by local atmospheric conditions, especially the probability of dust storm activity. Chryse Planitia, featuring many of the largest and most prominent outflow channels and possible mud volcanoes, is an important target site for current and future Mars landing missions. It is of great significance to understand that a Mars landing probe may encounter a dust storm situation during EDL season in the Chryse Planitia. In this study, based on four Martian years, Mars Orbiter Camera (MOC) Mars Daily Global Maps (MDGMs), 1172 dust storms were identified within Chryse’s 1600 km-radius ring. Secondly, the daily mean dust storm probability was calculated, binned by 1° of solar longitude in the Chryse landing area. The two active periods of dust storm activity are Ls = 177–239° and Ls = 288–4°, with an average daily mean dust storm probability of 9.5% and 4.1%. Dust storm activity frequency is closely interrelated with the seasonal ebb and flow of the north polar ice cap; consequently, most dust storms occur in either the cap’s growth or recession phase. We divided the Chryse landing area into square grids of 0.5° and computed the average probability of dust storm occurrence in each grid, which ranged from 0.19% to 2.42%, with an average of 1.22%. The dust storm activity probability in space was also inhomogeneous—low in the west and south but high in the east and north—which was mainly affected by the origin and the path of dust storm sequences. Based on empirical orthogonal function (EOF) analysis of storms in the Chryse area, 40.5% are cap-edge storms in the northern hemisphere. Finally, we concluded that the preferred time of a Mars landing mission is Ls = 18–65° in the Chryse Planitia, and three preferred landing areas were selected with low dust storm probability
Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of West Nile virus
Abstract Background West Nile Virus (WNV) is an emerging arthropod-born flavivirus with increasing distribution worldwide that is responsible for a large proportion of viral encephalitis in humans and horses. Given that there are no effective antiviral drugs available for treatment of the disease, efforts have been directed to develop vaccines to prevent WNV infection. Recently baculovirus has emerged as a novel and attractive gene delivery vehicle for mammalian cells. Results In the present study, recombinant baculoviruses expressing WNV premembrane (prM) and envelope (E) proteins under the cytomegalovirus (CMV) promoter with or without vesicular stomatitis virus glycoprotein (VSV/G) were constructed. The recombinant baculoviruses designated Bac-G-prM/E and Bac-prM/E, efficiently express E protein in mammalian cells. Intramuscular injection of the two recombinant baculoviruses (at doses of 108 or 109 PFU/mouse) induced the production of WNV-specific antibodies, neutralizing antibodies as well as gamma interferon (IFN-γ) in a dose-dependent pattern. Interestingly, the recombinant baculovirus Bac-G-prM/E was found to be a more efficient immunogen than Bac-prM/E to elicit a robust immune response upon intramuscular injection. In addition, inoculation of baculovirus resulted in the secretion of inflammatory cytokines, such as TNF-α, IL-2 and IL-6. Conclusions These recombinant baculoviruses are capable of eliciting robust humoral and cellular immune responses in mice, and may be considered as novel vaccine candidates for West Nile Virus.</p
IP-10 Promotes Blood–Brain Barrier Damage by Inducing Tumor Necrosis Factor Alpha Production in Japanese Encephalitis
Japanese encephalitis is a neuropathological disorder caused by Japanese encephalitis virus (JEV), which is characterized by severe pathological neuroinflammation and damage to the blood–brain barrier (BBB). Inflammatory cytokines/chemokines can regulate the expression of tight junction (TJ) proteins and are believed to be a leading cause of BBB disruption, but the specific mechanisms remain unclear. IP-10 is the most abundant chemokine produced in the early stage of JEV infection, but its role in BBB disruption is unknown. The administration of IP-10-neutralizing antibody ameliorated the decrease in TJ proteins and restored BBB integrity in JEV-infected mice. In vitro study showed IP-10 and JEV treatment did not directly alter the permeability of the monolayers of endothelial cells. However, IP-10 treatment promoted tumor necrosis factor alpha (TNF-α) production and IP-10-neutralizing antibody significantly reduced the production of TNF-α. Thus, TNF-α could be a downstream cytokine of IP-10, which decreased TJ proteins and damaged BBB integrity. Further study indicated that JEV infection can stimulate upregulation of the IP-10 receptor CXCR3 on astrocytes, resulting in TNF-α production through the JNK-c-Jun signaling pathway. Consequently, TNF-α affected the expression and cellular distribution of TJs in brain microvascular endothelial cells and led to BBB damage during JEV infection. Regarding regulation of the BBB, the IP-10/TNF-α cytokine axis could be considered a potential target for the development of novel therapeutics in BBB-related neurological diseases