5,753 research outputs found

    Competing electronic orders on Kagome lattices at van Hove filling

    Full text link
    The electronic orders in Hubbard models on a Kagome lattice at van Hove filling are of intense current interest and debate. We study this issue using the singular-mode functional renormalization group theory. We discover a rich variety of electronic instabilities under short range interactions. With increasing on-site repulsion UU, the system develops successively ferromagnetism, intra unit-cell antiferromagnetism, and charge bond order. With nearest-neighbor Coulomb interaction VV alone (U=0), the system develops intra-unit-cell charge density wave order for small VV, s-wave superconductivity for moderate VV, and the charge density wave order appears again for even larger VV. With both UU and VV, we also find spin bond order and chiral dx2−y2+idxyd_{x^2 - y^2} + i d_{xy} superconductivity in some particular regimes of the phase diagram. We find that the s-wave superconductivity is a result of charge density wave fluctuations and the squared logarithmic divergence in the pairing susceptibility. On the other hand, the d-wave superconductivity follows from bond order fluctuations that avoid the matrix element effect. The phase diagram is vastly different from that in honeycomb lattices because of the geometrical frustration in the Kagome lattice.Comment: 8 pages with 9 color figure

    Diffusion Adaptation over Networks under Imperfect Information Exchange and Non-stationary Data

    Full text link
    Adaptive networks rely on in-network and collaborative processing among distributed agents to deliver enhanced performance in estimation and inference tasks. Information is exchanged among the nodes, usually over noisy links. The combination weights that are used by the nodes to fuse information from their neighbors play a critical role in influencing the adaptation and tracking abilities of the network. This paper first investigates the mean-square performance of general adaptive diffusion algorithms in the presence of various sources of imperfect information exchanges, quantization errors, and model non-stationarities. Among other results, the analysis reveals that link noise over the regression data modifies the dynamics of the network evolution in a distinct way, and leads to biased estimates in steady-state. The analysis also reveals how the network mean-square performance is dependent on the combination weights. We use these observations to show how the combination weights can be optimized and adapted. Simulation results illustrate the theoretical findings and match well with theory.Comment: 36 pages, 7 figures, to appear in IEEE Transactions on Signal Processing, June 201

    A Novel Model of Working Set Selection for SMO Decomposition Methods

    Full text link
    In the process of training Support Vector Machines (SVMs) by decomposition methods, working set selection is an important technique, and some exciting schemes were employed into this field. To improve working set selection, we propose a new model for working set selection in sequential minimal optimization (SMO) decomposition methods. In this model, it selects B as working set without reselection. Some properties are given by simple proof, and experiments demonstrate that the proposed method is in general faster than existing methods.Comment: 8 pages, 12 figures, it was submitted to IEEE International conference of Tools on Artificial Intelligenc

    Finding Top- k

    Get PDF
    Diagnostic genes are usually used to distinguish different disease phenotypes. Most existing methods for diagnostic genes finding are based on either the individual or combinatorial discriminative power of gene(s). However, they both ignore the common expression trends among genes. In this paper, we devise a novel sequence rule, namely, top-k irreducible covering contrast sequence rules (TopkIRs for short), which helps to build a sample classifier of high accuracy. Furthermore, we propose an algorithm called MineTopkIRs to efficiently discover TopkIRs. Extensive experiments conducted on synthetic and real datasets show that MineTopkIRs is significantly faster than the previous methods and is of a higher classification accuracy. Additionally, many diagnostic genes discovered provide a new insight into disease diagnosis

    Nonperturbative Effect in Threshold Resummation

    Full text link
    We show that the conventional threshold resummation calculation cannot describe well the low energy Drell-Yan (DY) data without including the non-perturbative correction terms which are deduced from analyzing the asymptotic behavior of the resummation formalism. It is demonstrated that the non-perturbative correction is generally small for the large invariant mass DY pairs produced at the Tevatron and the LHC.Comment: JHEP06(2009)03

    Determination of impact parameter in high-energy heavy-ion collisions via deep learning

    Full text link
    In this study, Au+Au collisions with the impact parameter of 0≤b≤12.50 \leq b \leq 12.5 fm at sNN=200\sqrt{s_{NN}} = 200 GeV are simulated by the AMPT model to provide the preliminary final-state information. After transforming these information into appropriate input data (the energy spectra of final-state charged hadrons), we construct a deep neural network (DNN) and a convolutional neural network (CNN) to connect final-state observables with impact parameters. The results show that both the DNN and CNN can reconstruct the impact parameters with a mean absolute error about 0.40.4 fm with CNN behaving slightly better. Then, we test the neural networks for different beam energies and pseudorapidity ranges in this task. It turns out that these two models work well for both low and high energies. But when making test for a larger pseudorapidity window, we observe that the CNN shows higher prediction accuracy than the DNN. With the method of Grad-CAM, we shed light on the `attention' mechanism of the CNN model

    Detecting Chiral Magnetic Effect via Deep Learning

    Full text link
    The search of chiral magnetic effect (CME) in heavy-ion collisions has attracted long-term attentions. Multiple observables have been proposed but all suffer from obstacles due to large background contaminations. In this Letter, we construct an observable-independent CME-meter based on a deep convolutional neural network. After trained over data set generated by a multiphase transport model, the CME-meter shows high accuracy in recognizing the CME-featured charge separation from the final-state pion spectra. It also exhibits remarkable robustness to diverse conditions including different collision energies, centralities, and elliptic flow backgrounds. In a transfer learning manner, the CME-meter is validated in isobaric collision systems, showing good transferability among different colliding systems. Based on variational approaches, we utilize the DeepDream method to derive the most responsive CME-spectra that demonstrates the physical contents the machine learns.Comment: 7 pages, 10 figure
    • …
    corecore