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Diagnostic genes are usually used to distinguish different disease phenotypes. Most existing methods for diagnostic genes finding
are based on either the individual or combinatorial discriminative power of gene(s). However, they both ignore the common
expression trends among genes. In this paper, we devise a novel sequence rule, namely, top-𝑘 irreducible covering contrast sequence
rules (Top𝑘IRs for short), which helps to build a sample classifier of high accuracy. Furthermore, we propose an algorithm
called MineTop𝑘IRs to efficiently discover Top𝑘IRs. Extensive experiments conducted on synthetic and real datasets show that
MineTop𝑘IRs is significantly faster than the previous methods and is of a higher classification accuracy. Additionally, many
diagnostic genes discovered provide a new insight into disease diagnosis.

1. Introduction

It has been proved that many diseases are closely related
with genes [1–3]. In bioinformatics, such genes are called
diagnostic genes. Capturing these genes is an important
task, which helps in diagnosis, prediction, and treatment of
diseases [4].

According to biological theory, only a small number of
genes are directly related with a certain disease [5]. Biologists
always want to exploit fewer genes to provide higher disease
prediction accuracy. In practice, how to pick out these
diagnostic genes to distinguish different disease phenotypes
from a massive amount of gene expression data is often an
intractable problem.

Many studies have shown that contrast rules are very
promising for this problem. Contrast rules refer to the rules
that frequently appear in one class but rarely in other classes,
denoted as𝑋 → 𝐶, where𝑋 represents the diagnostic genes
and𝐶 represents a certain disease. Most of such methods can
be divided into two categories, that is, single discrimination
based [6] and combinatorial discrimination based [7]. The
former evaluates every gene according to their individual
discriminative power to the target classes and then selects

top-ranked genes. The latter often models the problem as
a subset search problem and focuses on the combinatorial
discriminative power of a set of genes. However, neither of
the two exploits the relationship among genes such that some
important diagnostic genes may be missed.

In this paper, we tackle the problem by utilizing the order
relationship among genes. Below is a real example for an
immediate comprehension to our basic idea.

Example 1. Figure 1 consists of two subfigures. In the top
subfigure, 4 genes are expressed over 25 samples. Samples
1∼16 are cancerous (labeled as “𝐶”) and samples 17∼25 are
normal (labeled as “𝑁”). In the bottom subfigure, another
set of 3 genes is expressed over the same set of samples.
The existing singleton or combination discriminability-based
methods cannot distinguish the two phenotypes. Since most
genes are of similar average expression values in the two phe-
notypes, they will not be selected by the singleton approach.
Moreover, all genes are expressed in both phenotypes. Thus,
the combination approach based on the cooccurrence of
genes will not select them either. Both of the methods ignore
the hidden interrelation among genes. In the top subfigure,
the gene order over the samples of cancerous phenotype “𝐶”
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Figure 1: A real example from the prostate cancer dataset.

is always 𝑔𝑒𝑛𝑒
4
≺ 𝑔𝑒𝑛𝑒

3
≺ 𝑔𝑒𝑛𝑒

2
≺ 𝑔𝑒𝑛𝑒

1
. Such order is

disturbed in normal phenotype “𝑁”. In the bottom subfigure,
the gene order in normal phenotype “𝑁” is 𝑔𝑒𝑛𝑒

5
≺ 𝑔𝑒𝑛𝑒

6
≺

𝑔𝑒𝑛𝑒
7
, while in cancerous phenotype “𝐶” such order does

not exist. Based on the ordered expression values, the disease
phenotypes (the two shadowed “blocks”) are well identified.

Example 1 indicates that contrast sequence rules may be
a promising solution to the mentioned problem. Another
advantage of incorporating the sequence rule into diagnostic
gene finding is that we may obtain higher disease prediction
accuracy by fewer genes. This is intuitively because the
order contains both individual information and combina-
torial information. In [8], we proposed a contrast sequence
rules mining algorithm, namely, NRMINER, and showed its
effectiveness and efficiency. However, there are still some
issues demanding a further consideration.

Given 𝑛 genes, there is up to 2
𝑛 subsets of genes. More-

over, each subset of 𝑖 genes corresponds to 𝑖! permutations.
Thus, the number of contrast sequence rules is at least
∑
𝑛

𝑖=1
(𝐶
𝑖

𝑛
⋅ 𝑖!) ≫ 𝑛! in theory. On one hand, massive

rules pose a crucial challenge for biologists to interpret and
validate the results. On the other hand, this may take too
much time such that the proposed method is not practically
feasible. In practice, we often need only a small set of
representative contrast sequence rules instead of all the rules.
This is also the so-called top-𝑘 problem in database and data
mining communities. Accordingly, the goal of this paper is
to discover top-𝑘 covering irreducible contrast sequence rules
(TopkIRs for short) from a given gene expression dataset.

Compared with the existing methods, our contributions
in this paper are claimed as follows.

(1) We propose the concept of top-𝑘 covering irreducible
contrast sequence rule, which greatly reduces the

burden for biologist to interpret and validate the
results and practically enables an efficient diagnostic
gene finding method.

(2) We devise the criteria of ranking irreducible contrast
sequence rules. Based on the criteria, we can pick out
shorter and fewer but more representative rules to
build classifier with higher classification accuracy.

(3) We develop a novel algorithm called MineTop𝑘IRs to
directly discover top-𝑘 covering irreducible contrast
sequence rules without postprocess. As we know, few
works address this problem in the context of sequence
mining.

The rest of this paper is organized as follows. In
Section 2, we introduce some preliminaries and give our
problem definition. Section 3 introduces the criteria of rank-
ing rules. Section 4 details the MineTop𝑘IRs algorithm.
Section 5 includes the experimental results and analysis.
Finally, Section 6 concludes this paper.

2. Preliminary

In this section, we first introduce some basic concepts useful
for further discussion and then formalize the problem to be
addressed in this paper.

2.1. Basic Concepts. A microarray dataset 𝐷 is an 𝑚 × 𝑛

matrix, with 𝑚 samples 𝑆 = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑚
} and 𝑛 genes 𝐺 =

{𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑛
}. A real value𝑑

𝑖𝑗
in𝐷 represents the expression

value of gene 𝑔
𝑗
on sample 𝑠

𝑖
. An example microarray dataset

of 7 genes and 6 samples is shown in Table 1, where the last
column lists the class label for each sample.

As mentioned, we want to tackle the problem from the
gene order perspective. Accordingly, we propose the EWave
model, a sequence model to represent the gene expression
data. Next are some necessary concepts.

Definition 2. Given an expression matrix 𝐷 of a sample set,
𝑆 = {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑚
}, and a gene set, 𝐺 = {𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑛
}, if for

a grouping threshold 𝛿, 𝛿 ≥ 0, and some sample 𝑠
𝑖
∈ 𝑆, there

exists a subset, 𝐺, of genes holding both (1) and (2), we say
𝐺
 is an equivalent dimension group, or an EDG in short, of

the sample 𝑠
𝑖
:

max
𝑔𝑗,𝑔𝑗
∈𝐺



𝑑
𝑖𝑗
− 𝑑
𝑖𝑗



< 𝛿 × min

𝑔𝑗∈𝐺

𝑑
𝑖𝑗
, (1)

∀𝑔
𝑖
, 𝑔
𝑗
∈ 𝐺

, min
𝑔
𝑗
∈𝐺



𝑑
𝑖𝑗
− 𝑑
𝑖𝑗



< min
𝑔
𝑗
∈(𝐺−𝐺)


𝑑
𝑖𝑗
− 𝑑
𝑖𝑗



.

(2)

Specifically, we call a gene satisfying (1) but excluded
from an EDG by (2) a “breakpoint.” The method of creating
EDGs is detailed in [8]. It is worthy to note that no order is
considered in an EDG, where the expression values have no
significant differences.

An EWave model can be used to represent the sequences
of EDGs. Figure 2 shows the EWave model corresponding to
the running example inTable 1, where𝛿 = 0.5. In each row 𝑖of



Computational and Mathematical Methods in Medicine 3

Table 1: An illustrative expression matrix with sample labels.

Sample 𝑔
1

𝑔
2

𝑔
3

𝑔
4

𝑔
5

𝑔
6

𝑔
7

tag
𝑠
1

2.2 1.3 0.8 2.38 1.44 0.3 0.48 𝐶
1

𝑠
2

3.3 1.25 2.54 6.3 2.3 0.62 1.4 𝐶
1

𝑠
3

1.26 6.6 3.1 5.4 5.62 0.94 1.72 𝐶
1

𝑠
4

4.3 0.34 7.2 7.1 1.9 2.1 2.66 𝐶
2

𝑠
5

2.78 0.62 5.1 1.86 1.74 1.34 2.92 𝐶
2

𝑠
6

1.1 2.85 2.1 0.48 2.4 0.52 2.33 𝐶
2

an EWavemodel, all genes are increasingly ordered according
to their expression values on sample 𝑠

𝑖
, and the pointer

pointing from 𝑔
𝑎
to 𝑔
𝑏
indicates an EDG starting at 𝑔

𝑎
and

ending at 𝑔
𝑏
. We omit the pointers pointing to a gene itself.

Different from the other traditional sequence-like data,
since the overlap among different EDGs is allowed in the
EWave model, a gene in an EDG can also belong to several
other EDGs at the same time. Given a sample 𝑠

𝑖
and a gene 𝑔

𝑎
,

the sequence of EDGs of 𝑠
𝑖
is denoted as $

𝑖
. Then, we call the

index of the first EDG in $
𝑖
containing 𝑔

𝑎
the head position

of 𝑔
𝑎
with respect to 𝑠

𝑖
and the index of the last EDG in $

𝑖

containing𝑔
𝑎
the tail position of𝑔

𝑎
with respect to 𝑠

𝑖
, denoted

as𝐻
𝑖
(𝑔
𝑎
) and 𝑇

𝑖
(𝑔
𝑎
), respectively.

Example 3. For 𝑠
3

in Figure 2, the head position of
𝑔
1
, 𝐻
3
(𝑔
1
), is 2, and the last position of 𝑔

1
, 𝑇
3
(𝑔
1
), is 3.

Definition 4. Let $ be a sequence of EDGs in anEWavemodel,
where the order of genes is 𝑔

𝑖1
𝑔
𝑖2
, . . . , 𝑔

𝑖𝑛
.Then, we call a gene

sequence G = ℎ
𝑗1
ℎ
𝑗2
, . . . , ℎ

𝑗𝑡
is contained by $, denoted as

ℎ ⊑ $, if there exist the integers 1 ≤ 𝑘
1
≤ 𝑘
2
≤ ⋅ ⋅ ⋅ ≤ 𝑘

𝑡
≤ 𝑛

such that ℎ
𝑗1
= 𝑔
𝑖𝑘1
, ℎ
𝑗2
= 𝑔
𝑖𝑘2
, . . . , ℎ

𝑗𝑡
= 𝑔
𝑖𝑘𝑡
. Further, we refer

to the gene sequenceG, where any pair of genes are not in the
same EDG, as a significant chain.

Example 5. In Figure 2, 𝑔
6
𝑔
7
𝑔
5
is a significant chain of $

1
, but

𝑔
6
𝑔
2
𝑔
5
is not, since 𝑔

2
and 𝑔

5
coexist in the same EDG.

As mentioned above, we aim to capture the difference
among different sample phenotypes from a sequence point
of view. Thus, the benefit of EWave model has two aspects.
On one hand, not only the gene expression data are very
noisy, but also sometimes the gene expression values are
very close. If we only consider the significant chain, the
difference between genes is large enough so that the difficulty
to determine the order among genes is overcome. On the
other hand, the high dimension of gene expression data is
largely reduced at the same time. Next, we introduce some
concepts related with the contrast sequence rule under the
EWave model.

Definition 6. Let𝐷 be EWave modeled gene expression data.
Then, for a given sequence rule 𝛾, denoted as𝑋 → 𝐶, where
𝑋 is a significant chain and𝐶 is a given class label, the support
of 𝛾 is defined as the number of the sequences of EDGs in 𝐷

containing 𝑋𝐶, denoted as supp(𝛾) and the sample support
set of 𝛾 denoted as 𝑅(𝛾). The confidence of 𝛾 is defined as
the ratio of the number of the sequences of EDGs containing
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Figure 2: The EWave model of data in Table 1.

𝑋𝐶 to that of the sequence of EDGs containing𝑋, denoted as
conf(𝛾) = supp(𝑋𝐶)/ supp(𝑋).

Example 7. In Figure 2, let 𝛾 be the rule 𝑔
7
𝑔
4
→ 𝐶
1
. Then,

𝑅(𝛾) = {𝑠
1
, 𝑠
2
, 𝑠
3
} and supp(𝛾) = 3. Further, since supp(𝑔

7
𝑔
4
)

= 4, conf(𝛾) = 3/4 = 75%.

Definition 8. Let 𝐷 be an EWave modeled gene expression
dataset and 𝐶 a specified class label. RG = {𝑋

𝑖
→ 𝐶 |

∃𝑠 ∈ 𝐷,𝑋
𝑖
⊑ $} is a rule group with antecedent support set 𝑅

and consequent 𝐶, iff (1) ∀𝑋
𝑖
→ 𝐶 ∈ RG, 𝑅(𝑋

𝑖
) = 𝑅 and

(2) ∀𝑅(𝑋
𝑖
) = 𝑅,𝑋

𝑖
→ 𝐶 ∈ RG.

Example 9. In Figure 2, 𝑅(𝑔
6
𝑔
7
𝑔
3
𝑔
4
) = 𝑅(𝑔

6
𝑔
7
𝑔
4
) =

𝑅(𝑔
6
𝑔
3
𝑔
4
) = 𝑅(𝑔

7
𝑔
3
𝑔
4
) = 𝑅(𝑔

3
𝑔
4
) = {𝑠

1
, 𝑠
2
, 𝑠
3
}. Thus, they

make up a rule group RG = {𝑔
6
𝑔
7
𝑔
3
𝑔
4
→ 𝐶
1
, 𝑔
6
𝑔
7
𝑔
4
→

𝐶
1
, 𝑔
6
𝑔
3
𝑔
4

→ 𝐶
1
, 𝑔
7
𝑔
3
𝑔
4

→ 𝐶
1
, 𝑔
3
𝑔
4

→ 𝐶
1
} with

antecedent support set {𝑠
1
, 𝑠
2
, 𝑠
3
} and a specified class label

𝐶
1
.

In this paper, we want to use the contrast sequence rules
to distinguish the sample phenotypes. However, the number
of contrast sequence rules in the dataset is prohibitively large,
and most of them are redundant. Discovering all contrast
sequence rules is inefficient and trivial. Thus, we propose the
concept of irreducible contrast sequence rule, which is more
concise and representative.

Definition 10. Let 𝐷 be an EWave modeled gene expression
dataset. A sequence rule 𝛾 in the form of 𝑋 → 𝐶 is called
a contrast sequence rule if supp(𝛾) and conf(𝛾) are no less
than the minimum support threshold 𝛼 and the confidence
threshold 𝛽, respectively, where 𝑋 is a sequence and 𝐶 is a
class label.

Example 11. Suppose 𝛼 = 3 and 𝛽 = 90%. Then, 𝛾:
𝑔
6
𝑔
7
𝑔
3
𝑔
4
→ 𝐶
1
in Figure 2 is a contrast sequence rule since

supp(𝛾) = 3 ≥ 𝛼 and conf(𝛾) = 100% > 𝛽.

Definition 12. For any given contrast sequence rule 𝛾: 𝑋 →

𝐶 of conf(𝛾) = 𝛽, we call it an irreducible contrast sequence
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rule if any of 𝑋 → 𝐶 (𝑋

⊑ 𝑋) has conf(𝑋 → 𝐶) < 𝛽. In

other words, any subrule of a contrast sequence rule 𝛾 should
not be a contrast sequence rule.

Example 13. 𝛾: 𝑔
6
𝑔
7
𝑔
3
𝑔
4
→ 𝐶
1
in Figure 2 is not an irreduc-

ible contrast sequence rule since there exists a subrule of 𝛾,
say 𝛾: 𝑔

6
𝑔
7
𝑔
4
→ 𝐶
1
, such that conf(𝛾) ≥ conf(𝛾) = 100%.

Definition 14. Given 𝐷, an EWave modeled gene expression
dataset, the top-𝑘 covering irreducible contrast sequence
rules for a sample 𝑠

𝑖
is the set of rules {𝛾

𝑠𝑖 ,𝑗
} (1 ≤ 𝑗 ≤ 𝑘),

where the antecedent of 𝛾
𝑠𝑖 ,𝑗

is contained by 𝑠
𝑖
, ∀𝑥, 𝑦 ∈ 𝑘,

𝑅(𝛾
𝑠𝑖 ,𝑥

) ̸= 𝑅(𝛾
𝑠𝑖 ,𝑦

) and there exists no rule 𝛾
, 𝛾 ∉ {𝛾

𝑠𝑖 ,𝑗
}

such that 𝛾 can substitute any rule in {𝛾
𝑠𝑖 ,𝑗
} based on the rule

priority. For brevity, we will use the abbreviation Top𝑘IRs to
refer to top-𝑘 covering irreducible contrast sequence rules for
each sample.

Example 15. Suppose 𝑘 = 2. Then, for sample 𝑠
1
in Figure 2,

the top-𝑘 covering irreducible contrast sequence rules is the
set of rules {𝛾

𝑠1,1
: 𝑔
7
𝑔
5

→ 𝐶
1
, 𝛾
𝑠1 ,2

: 𝑔
3
𝑔
4

→ 𝐶
1
}. This is

because (1) 𝑠
1

∈ 𝑅(𝛾
𝑠1 ,1

) and 𝑠
1

∈ 𝑅(𝛾
𝑠1 ,2

), (2) both 𝛾
𝑠1,1

and 𝛾
𝑠1 ,2

are irreducible contrast sequence rules, and (3) there
is no other rule 𝛾 which can substitute 𝛾

𝑠1,1
or 𝛾
𝑠1,2

due to
conf(𝛾

𝑠1,1
) = conf(𝛾

𝑠1 ,2
) = 100%.

2.2. ProblemDescription. Given (1) a gene expression dataset
𝐷 where each sample is attached with a unique class label,
(2) the equivalent threshold 𝛿, (3) the minimum support
threshold 𝛼, and (4) the confidence threshold 𝛽, the problem
is to efficiently discover the set of top-𝑘 covering irreducible
contrast sequence rules for each sample.

3. Criteria of Ranking Rules

In this section, we introduce the criteria of ranking rules. In
order to evaluate the (dis)similarity between sequences, we
propose the concept of projection distance which is more
suitable for EWavemodeled gene expression data.The reason
is that projection distance takes into account not only the
difference on the same position between two sequences but
also the displacement between the two items.

Assume 𝑜
𝑖
is a gene sequence and $ is the gene sequence

corresponding to sample 𝑠, the projection of 𝑜
𝑖
on $, denoted

as 𝑜
𝑖
| 𝑠, refers to the sequence of all elements in 𝑜

𝑖
, permuted

according to their relative orders in $. Further, if a pair of
items in 𝑜

𝑖
, denoted as (𝑥, 𝑦), has the reversal relative order in

𝑜
𝑖
| 𝑠, we call it a reverse pair. Then, for an item 𝑥, if it is at the

𝑘th locus in 𝑜
𝑖
and at the 𝑗th locus in 𝑜

𝑖
| 𝑠, we call |𝑘 − 𝑗| the

displacement of 𝑥 between 𝑜
𝑖
and 𝑜
𝑖
| 𝑠, denoted as dist

𝑥
(𝑜
𝑖
, 𝑠).

Definition 16. Given a gene sequence 𝑜
𝑖
and the sequence $

corresponding to sample 𝑠, the projection distance between 𝑜
𝑖

and 𝑜
𝑖
| 𝑠 is defined by the following formula:

PD (𝑜
𝑖
, 𝑜
𝑖
| 𝑠) = ∑

𝑥,𝑦∈𝑜𝑖
𝑥 ̸=𝑦

𝜙 (𝑥, 𝑦) [dist
𝑥
(𝑜
𝑖
, 𝑠) + dist

𝑦
(𝑜
𝑖
, 𝑠)] ,

(3)

where 𝜙(𝑥, 𝑦) is a Boolean function expressed as 𝜙(𝑥, 𝑦) = 1,
if (𝑥, 𝑦) is a reversal pair; otherwise, 𝜙(𝑥, 𝑦) = 0.

Now, we adopt a similarity function defined based on
the concept of projection distance (or simply PD) to identify
the (dis)similarity between a sequence and its projection
on sample 𝑠. The similarity function is formally defined as
follows.

Definition 17. Given a gene sequence 𝑜
𝑖
and the gene sequence

𝑆 corresponding to sample 𝑠, the PD similarity between 𝑜
𝑖
and

𝑜
𝑖
| 𝑠, denoted as SimPD(𝑜𝑖, 𝑜𝑖 | 𝑠), is defined as

SimPD (𝑜
𝑖
, 𝑜
𝑖
| 𝑠) = 1 −

PD (𝑜
𝑖
, 𝑜
𝑖
| 𝑠)

∑
𝑜𝑖

𝑗=1
(
𝑜𝑖
 + 1 − 𝑗) ∗ (

𝑜𝑖
 − 𝑗)

, (4)

where |𝑜
𝑖
| is the length of gene sequence 𝑜

𝑖
.

From (4), we can find that the smaller the projection
distance between two sequences, the more the similarity of
the sequences. If PD(𝑂

1
, 𝑂
2
) = 0, SimPD(𝑜1, 𝑜2) = 1, which

means the two sequences are totally the same. Next, we
introduce the criteria of ranking rules with two cases.

Definition 18. The priority within the same rule group: given
two rules 𝛾

1
: 𝑋
1
→ 𝐶, 𝛾

2
: 𝑋
2
→ 𝐶, and 𝑅(𝛾

1
) = 𝑅(𝛾

2
), we

say 𝛾
1
is prior to 𝛾

2
if

∑
𝑠

∈(𝑆−𝑅(𝛾1))

SimPD (𝑋
1
, 𝑋
1
| 𝑠

)

𝑆 − 𝑅 (𝛾
1
)


<
∑
𝑠

∈(𝑆−𝑅(𝛾2))

SimPD (𝑋
2
, 𝑋
2
| 𝑠

)

𝑆 − 𝑅 (𝛾
2
)


.

(5)

From (5), we can conclude that themore the antecedent of
the rule is different from the gene sequence in the nonsupport
set, the higher the priority the rule has.

Example 19. In Figure 2, the support sets of rules ⟨𝑔
3
𝑔
4
⟩ →

𝐶
1
and ⟨𝑔

7
𝑔
5
⟩ → 𝐶

1
are both {𝑠

1
, 𝑠
2
, 𝑠
3
}, but based on (5),

(0 + 0 + 0) < (0 + 0 + 1/3), so ⟨𝑔
3
𝑔
4
⟩ → 𝐶

1
is more prior

than ⟨𝑔
7
𝑔
5
⟩ → 𝐶

1
.

Definition 20. The priority between rule groups: given two
rules 𝛾

1
: 𝑋
1

→ 𝐶, 𝛾
2
: 𝑋
2

→ 𝐶, and 𝑅(𝛾
1
) ̸= 𝑅(𝛾

2
), we

say 𝛾
1
is prior to 𝛾

2
, if and only if one of the following three

conditions satisfied: (1) conf(𝛾
1
) > conf(𝛾

2
); (2) conf(𝛾

1
) =

conf(𝛾
2
) and supp(𝛾

1
) > supp(𝛾

2
); (3) conf(𝛾

1
) = conf(𝛾

2
),

supp(𝛾
1
) = supp(𝛾

2
) and 𝛾

1
is discovered before 𝛾

2
.

Example 21. In Figure 2, assume 𝛾
1
: ⟨𝑔
3
𝑔
4
⟩ → 𝐶

1
, 𝛾
2
:

⟨𝑔
6
𝑔
5
𝑔
4
⟩ → 𝐶

1
, and 𝛾

3
: ⟨𝑔
7
𝑔
4
⟩ → 𝐶

1
. Because conf(𝛾

1
) =

conf(𝛾
2
) = 100% and supp(𝛾

1
) = 3, which is higher than that

of supp(𝛾
2
) = 2, 𝛾

1
ismore prior than 𝛾

2
. Also, conf(𝛾

3
) = 75%

and conf(𝛾
2
) > conf(𝛾

3
), so 𝛾

2
is more prior than 𝛾

3
.

4. The MineTop𝑘IRs Algorithm

In this section, we present our algorithm, called MineTop-
𝑘IRs, to solve the problem given in Problem Statement. First,
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Table 2: The Head-Tail matrix of gene expression data.

Sample 𝑔
1

𝑔
2

𝑔
3

𝑔
4

𝑔
5

𝑔
6

𝑔
7

tag
𝑠
1

5.5 4.4 3.3 5.5 4.4 1.1 2.2 𝐶
1

𝑠
2

3.3 2.2 3.3 4.4 3.3 1.1 2.2 𝐶
1

𝑠
3

2.3 1.1 4.4 5.5 5.5 2.2 3.3 𝐶
1

𝑠
4

3.3 1.1 4.4 4.4 2.2 2.2 2.2 𝐶
2

𝑠
5

3.3 1.1 4.4 4.4 2.2 2.2 2.2 𝐶
2

𝑠
6

2.2 3.3 3.3 1.1 3.3 1.1 3.3 𝐶
2

we give a naive method to construct classifier based on
contrast sequence rules.

Step 1. Discover all the frequent sequence patterns with a low
minimum support threshold.

Step 2. Combine each sequence pattern with a class label to
generate a sequence rule.Then, pick out the contrast sequence
rule with highest confidence for each sample in the dataset.

Obviously, this naive two-step mining method generates
toomany rules in Step 1, which takes too long time.Moreover,
selecting only one rule for each sample is often not enough.
Instead, our algorithm is one-pass process, which is much
more efficient. Further, each sample is guaranteed to be
covered by top-𝑘 irreducible contrast sequence rules. In what
follows, we detail the proposed MineTop𝑘IRs algorithm.

4.1. Head-Tail Matrix. The Head-Tail matrix 𝑀 is a useful
structure to accelerate the detection whether a sequence is
a significant chain corresponding to some sample template
sequence $

𝑖
, which is a necessary condition of the antecedent

of a contrast sequence rule. Table 2 gives the Head-Tail
matrix corresponding to the model shown in Figure 2, where
each row represents a considered sample, and each column
represents a remained gene. Every entry (𝑖, 𝑗) in the matrix
𝑀 records a two-dimensional vector (𝑥, 𝑦), where 𝑥 denotes
the head position of the gene 𝑔

𝑗
in $
𝑖
, that is, 𝐻

𝑖
(𝑔
𝑗
), and 𝑦

denotes the tail position of the gene 𝑔
𝑗
in $
𝑖
, that is, 𝑇

𝑖
(𝑔
𝑗
).

For example, in Figure 2, 𝐻
3
(𝑔
1
) = 2 and 𝑇

3
(𝑔
1
) = 3, so the

entry at row 3 and column 1 of Table 2 records (2, 3).
An efficient way to decide whether a sequence 𝑋 is a

significant chain with respect to $
𝑖
is that we only consider

any neighboring pair of genes such as 𝑔
𝑎
and 𝑔

𝑏
; if 𝑇
𝑖
(𝑔
𝑎
) <

𝐻
𝑖
(𝑔
𝑏
) is always true, we say that 𝑋 must be a significant

chain for $
𝑖
, which is the sequence of EDGs of sample 𝑠

𝑖
.

Note: While computing the support of a gene sequence, we
use the Head-Tail matrix with 𝛿 > 0, which makes the order
between genes in the sequence significant enough. However,
when computing the projection distance of a gene sequence
for some $

𝑖
, we use the Head-Tail matrix with 𝛿 = 0, which

makes the displacement of a reverse pair easily determined.

4.2. The Mining Algorithm. The search space of enumerat-
ing all gene sequences is prohitably large. Thus, a suitable
traversal framework with some effective pruning strategies is
necessary.

In this paper, we adopt a breadth-first traversal frame-
work. As we know, most sequence pattern mining methods
such as BIDE [9] and FEAT [10] adopt a depth-first traversal.
The goodness is that exploiting the antimonotonicity of
support, the depth-first traversal can directly prune searching
space based on the current sequence without generating
candidate set. However, depth-first traversal is not suitable
to solve the problem raised in this paper. The reason is that
(1) the confidence of irreducible contrast sequence rule is
not antimonotonic, which requires us to detect whether all
subrules of the current rule satisfy the conditions defined in
Definition 12 that is the confidence of all subrules below 𝛽.
For example, suppose the length of current sequence rule
is 𝑙, we need to detect all the subrules, which shows the
computation is very large. (2) Under the premise of not
establishing access rules index, it is possible to repeatedly
access many rules. The abovementioned two cases are very
time-consuming. On the contrary, the breadth-first traversal
can be a good solution to the problem mentioned above. We
only need to detect whether all the (𝑙 − 1)-size subrules meet
the conditions. Further these subrules can be obtained by
directly accessing the current rule candidate setwhich ismore
efficient.

Formally, the algorithm is shown in Algorithm 1. There
are four input parameters of the algorithm, the original
dataset 𝐷, equivalent threshold 𝛿, the minimum support 𝛼,
and confidence threshold 𝛽. Because of solving the problem
in gene sequence perspective, the algorithm will first trans-
form 𝐷 into the EWave model 𝐷 and then construct the
Head-Tail matrix which can accelerate the calculation of rule
support. At the same time, the top-𝑘 covering irreducible
contrast sequences rules for each sample 𝑠

𝑖
with consequent

𝐶, denoted as 𝜁
𝑠𝑖

= [𝛾
𝑠𝑖1
, . . . , 𝛾

𝑠𝑖𝑘
], will be initialized. Also,

we put all the 1-size rules that consist of single gene into rule
candidate set Candi R. Then the function breathfirst search
is called to perform the breath-first traversal to find out the
top-𝑘 rules for each sample.

The function breathfirst search takes in four parameters:
the rule candidate set Candi R, minimum support 𝛼, confi-
dence threshold 𝛽, and the size of rule 𝑙. When the algorithm
executes to the 𝑙 level, it generates all the (𝑙 + 1)-size rules
based on the rules in Candi R (line 2). For each (𝑙 + 1)-size
rule, the algorithm is based on three pruning rules (lines
4, 6, and 11) to detect whether it will be put into Candi R
for further extension (line 8) or used to update the top-
𝑘 covering rules for samples in its support set (line 13) or
just be pruned. It is worth noting that the confidence of
all the rules in Candi R must be below 𝛽 because once the
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Input: a𝑚 × 𝑛 gene expression dataset𝐷; the required number of rules 𝑘; the equivalent threshold 𝛿; the support threshold 𝛼;
the confidence threshold 𝛽

Output: All top-𝑘 covering irreducible contrast sequence rules 𝜁
𝑠𝑖
= [𝛾
𝑠𝑖1
, . . . , 𝛾

𝑠𝑖𝑘
] for each sample 𝑠

𝑖
with class label 𝐶

(1) Convert dataset𝐷 into the EWave model𝐷, w.r.t. 𝛿;
(2) Construct Head-Tail matrix;
(3) Initiate a list of 𝑘 rules with both support and confidence values of 0, 𝜁

𝑠𝑖
= [𝛾
𝑠𝑖1
, . . . , 𝛾

𝑠𝑖𝑘
] for each sample 𝑠

𝑖
with class

label 𝐶;
(4) Initiate the rule candidate set Candi R with all 1-size sequence rules;
(5) Call breathfirst search(candi R, 𝛼, 𝛽, 1);
(6) Return 𝜁

𝑠𝑖
for every 𝑠

𝑖
with class label 𝐶;

Function: breathfirst search(candi R, 𝛼, 𝛽, 𝑙)
(1) while candi R ̸= 𝜙 do
(2) foreach 𝑙 + 1-size rule 𝛾 generated based on the 𝑙-size rules in candi R do
(3) if ∀𝑙-size subrule of 𝛾

 exists in candi R then
(4) if supp(𝛾) > 𝛼 then Pruning rule 1;
(5) if conf (𝛾) < 𝛽 then
(6) Pruning rule 2;
(7) add 𝛾

 into candi R;
(8) else
(9) Check the 𝑘th covering rule 𝛾

𝑠𝑖𝑘
for each sample 𝑠

𝑗
∈ 𝑅(𝛾


) to find

the lowest confidenceminconf and the corresponding support sup;
(10) if (conf (𝛾) >minconf )∨(conf (𝛾) =minconf∧supp(𝛾) ≥ sup) then
(11) Pruning rule 3;
(12) Update 𝜁

𝑠𝑖
= [𝛾
𝑠𝑖1
, . . . , 𝛾

𝑠𝑖𝑘
] for each sample 𝑠

𝑗
∈ 𝑅(𝛾


) with 𝛾



based on Definitions 18 and 20;
(13) end
(14) end
(15) Delete all the 𝑙-size rules in candi R;
(16) 𝑙++;
(17) end

Algorithm 1: The MineTop𝑘IRs Algorithm.

confidence of a rule exceeds 𝛽, all the super rules of it cannot
be irreducible contrast sequence rules. After the end of each
loop, the algorithm deletes the whole l-size rules in Candi R
(line 17). The algorithm ends when Candi R = 𝜙 (line 1).

4.2.1. Pruning Strategies. We next illustrate the pruning tech-
niques that are used in MineTop𝑘IRs. With the help of these
pruning rules, we can find out the top-𝑘 covering irreducible
contrast sequence rules for each sample efficiently.

Pruning Rule 1. Let 𝛾: 𝑋 → 𝐶 be the current considered
sequence rule; if there exists a sequence rule 𝛾: 𝑋 → 𝐶,
𝑋

⊑ 𝑋, and conf(𝛾) > 𝛽, the rule itself and all its super

rules can be pruned.

Proof. Based on the definition of irreducible contrast
sequence rule, if a sequence rule 𝛾: 𝑋 → 𝐶 is
irreducible contrast sequence rule, it requires that ∀𝛾

:
𝑋

→ 𝐶 (𝑋


⊑ 𝑋), conf(𝛾) < 𝛽. Thus, if any of its subrules

𝛾
: 𝑋 → 𝐶 do not satisfy this condition, the sequence rule

𝛾: 𝑋 → 𝐶 cannot be an irreducible contrast sequence rule.
Similarly, none of its super rules can be irreducible contrast
sequence rules.

Specific to our algorithm, we store each rule whose
confidence and all its subrules’ confidence are below 𝛽 in

Candi R for further extension. When deciding whether a
newly generated 𝑙-size rule is to be pruned, we only need to
test if all of its (𝑙 − 1)-size subrules are in Candi R. If not, we
can safely prune this sequence rule and all its super rules.

Pruning Rule 2. Let 𝛾: 𝑋 → 𝐶 be the current considered
sequence rule and 𝛼 the minimum support threshold. If
supp(𝑋 → 𝐶) < 𝛼, then the current rule 𝛾 and all its super
rules are pruned.

Proof. It is immediately derived from the a priori property of
sequence [11] and Definition 12.

In MineTop𝑘IRs, we can use the constraint of top-𝑘
to prune rules. Combined with Definition 20, we compute
minconf and sup, the critical point of Top𝑘IRs thresholds
for the samples in 𝑅(𝛾), where minconf is the minimum
confidence value of the discovered Top𝑘IRs of all the samples
in 𝑅(𝛾) and sup is the corresponding support. Assume the
top-𝑘 covering irreducible contrast sequence rules of each
sample 𝑠

𝑖
are ranked according to the priority between rule

groups such that 𝛾
𝑠𝑖1

≺ 𝛾
𝑠𝑖2

≺ ⋅ ⋅ ⋅ ≺ 𝛾
𝑠𝑖𝑘
:

minconf = min
𝑠𝑖∈𝑅(𝛾)

{conf (𝛾
𝑠𝑖𝑘
)} ,

sup = sup (𝛾
𝑠𝑥𝑘

) , where conf (𝛾
𝑠𝑥𝑘

) = minconf.
(6)
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Table 3: The information of gene expression data.

Dataset # sample # gene 𝐶
1

𝐶
2

𝐶
1
:𝐶
2

Leukemia 38 5000 ALL AML 27 : 11
DLBCL 77 7129 DLBCL FL 58 : 19
HBC 22 3326 BRCA Sporadic 15 : 7
PC 25 6500 Cancer BPH 16 : 9
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Figure 3: Scalability.

Pruning Rule 3.Given the current considered sequence rule 𝛾:
𝑋 → 𝐶 and conf(𝛾) ≥ 𝛽,minconf and sup computed accord-
ing to (6), if the rule is less prior based on the priority between
rule groups (Definition 20) than 𝛾

𝑠𝑥𝑘
(conf(𝛾

𝑠𝑥𝑘
) = minconf,

sup = sup(𝛾
𝑠𝑥𝑘

)), then the rule 𝛾 and all its super rules cannot
become a rule in the top-𝑘 covering irreducible contrast
sequence rules list of any sample and can be safely pruned.

If the current sequence rule 𝛾:𝑋 → 𝐶 cannot be pruned
by Pruning Rule 3, there are two situations. On one hand,
∀𝑠
𝑖
∈ 𝑅(𝛾) when there are no rules in {𝛾

𝑠𝑖1
, . . . , 𝛾

𝑠𝑖𝑘
} that have

the same sample support set as that of 𝛾, we only need to
detect if 𝛾 is more prior than 𝛾

𝑠𝑖𝑘
, if so, we substitute 𝛾

𝑠𝑖𝑘
for 𝛾.

On the other hand, because in this paper we want to find out
top-𝑘 rules for each samplewith different sample support sets,
∀𝑠
𝑖
∈ 𝑅(𝛾) when there is some rule in {𝛾

𝑠𝑖1
, . . . , 𝛾

𝑠𝑖𝑘
} that has

the same sample support set as that of 𝛾, we need to find out
that if 𝛾 is more prior than the rule has the sample support
set with 𝛾 based on the priority within the same rule group
(Definition 18), if so, we replace this rule with 𝛾 which can
guarantee the current rules in {𝛾

𝑠𝑖1
, . . . , 𝛾

𝑠𝑖𝑘
} have the highest

priority.
In addition, another optimization method is utilized in

Pruning rule 3. If we find all Top𝑘IRs have 100% confidence
and the lowest support value of 𝑘 rules is larger than 𝛼, we
dynamically increase the user-specified support threshold.

5. Performance Studies

In this section, we will look at both the efficiency of our
algorithm in discovering Top𝑘IRS and the usefulness of the

discovered rules. All our experiments were performed on a
HP PC with 2.33GHz Intel Core 2 CPU, 2GB RAM, and
a 160GB hard disk running Windows XP. Algorithms were
coded in Standard C.

Datasets. Four real gene expression datasets for experimental
studies: Leukemia [1], DLBCL Tumor [2], Hereditary Breast
Cancer (HBC) [3], and Prostate Cancer (PC) [12]. Table 3
shows the characteristics of the four datasets: the number
of samples (#sample), the number of genes (#gene), and
the label of class 𝑖 (𝐶

𝑖
). The number of samples in every

class is shown in the last column. Moreover, we generate the
synthetic datasets by using a specialized dataset generator [8].

5.1. Efficiency of MineTop𝑘IRs. In term of efficiency, we
compareMineTop𝑘IRs with R-FEAT and NRMINER [8]. On
one hand, R-FEAT is changed from the sequence generator
mining algorithms FEAT [10]. Briefly, we apply FEAT on
a given dataset, when a generator 𝑋 is found, we decide
whether 𝑋 → 𝐶 could be a result by checking all rules
𝑋


→ 𝐶, where 𝑋


⊑ 𝑋, satisfying the conditions
based on Definition 14. On the other hand, the NRMINER
algorithm adopts the template driven method to find out
all the interesting nonredundant contrast sequence rules,
which are necessary for checking whether the conditions in
Definition 14 are satisfied. We should point out that the rules
discovered by MineTop𝑘IRs are a subset of the above two
existing methods.

In Figure 3, we study how the running time varies with
#sample and #gene by increasing #sample from 10 to 30 while
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fixing #gene to 100 and then increasing #gene from 20 to 100
while fixing #sample to 30, where the synthetic datasets are
utilized. Figures 3(a) and 3(b) show that the running time
becomes longer with #sample and #gene increasing. This is
because the searching space also becomes larger. However,
the MineTop𝑘IRs is always much faster than the other
two methods; the reason is that our algorithm can directly
discover the results in one step. However, the other two
are two-step mining methods, which need to first discover
a bigger result set and then conduct the postprocessing.
Further, with the searching space increasing, the number of
rules after first step mining grows exponentially. Thus, it is
very time-consuming.

Figure 4 shows the effect of varying 𝑘 towards runtime.
We observe similar tendencies on all datasets. It is quite rea-
sonable that MineTop𝑘IRs is monotonously increasing with
𝑘. Also, as shown in Figure 5, MineTop𝑘IRs is monotonously
decreasing with 𝛿. Figures 6 and 7 show the effect of varying
minimum support threshold 𝛼 and the minimum confidence
threshold 𝛽 on four real gene expression datasets. Figures

6(a)–6(d) show the running time varying with the minimum
support threshold 𝛼, where the other two parameters 𝛽 and 𝛿
are set to 0.8 and 0. Note that the 𝑦-axes in Figures 6 and 7 are
in logarithmic scale. We run MineTop𝑘IRs by setting 𝑘 = 10.
In Figure 7, 𝛽 changes from 70% to 90% while 𝛿 = 0 and
𝛼 is fixed in every dataset. As seen from Figure 6, running
time decreases with the increasing of 𝛼. This is because the
increasing of 𝛼 prunes more useless rules. We also find out
that MineTop𝑘IRs is usually one order of magnitude faster
than the other two algorithms, especially at low minimum
support. The reason MineTop𝑘IRs outperforms the other
two algorithms is that R-FEAT and NRMINER discover a
large number of rules at lower minimum support while the
number of rules discovered by MineTop𝑘IRs is bounded.
Besides,MineTop𝑘IRs can use Pruning strategy 1 to prune the
search space; however, R-FEAT and NRMINER do not meet
this property. Figure 7 shows that the running time of both
NRMINER and R-FEAT does not change significantly as 𝛽 is
increasing, which is because the pruning strategies of these
methods are mainly based on support threshold 𝛼. However,
the running time a little increases with the increasing 𝛽.
This is because with the increasing of 𝛽, the rules whose
confidence below𝛽will also increase; thus the pruning ability
decreases a little. Despite so, the MineTop𝑘IRs is still faster
than the other two algorithms based on the above reasons in
Figure 6.

5.2. Effectiveness of MineTop𝑘IRs. In terms of the effective-
ness of MineTop𝑘IRs, the classification accuracy and the
complexity are used as the performance standard for evalu-
ation. Moreover, the biological significance of the discovered
genes is also discussed.

5.2.1. Accuracy and Complexity. We build a classifier called
Top𝑘IR classifier based on the rules that MineTop𝑘IRs dis-
covered.TheTop𝑘IR classifier is composed of 𝑘 subclassifiers,
denoted as IR

1
, . . . , IR

𝑘
. Each IR

1
classifier is built based on all

the top-𝑗 rules for each sample in the dataset. We call IR
1
the

main classifier and IR
2
, . . . , IR

𝑘
are backup classifiers. We use

every subclassifier in order until the test sample is successfully
classified. Besides both main and backup classifiers we set a
default class which is set as the majority class of the training
data. If a test sample cannot be classified by the 𝑘 classifiers,
we put it into the default class.

When building each subclassifier, the score function in
(7) [13] is adopted, where 𝑟 ∈ R(𝐶, 𝑠) represents the rules
matching the test sample 𝑠 in class𝐶, and 𝑟 ∈ R(𝐶) represents
all the rules in class 𝐶. To which class a test sample should be
assigned is decided by a matched rule of the highest score:

Score (𝑠 ∈ 𝐶) =
∑
𝑟∈R(𝐶,𝑠) supp (𝑟) conf (𝑟)

∑
𝑟∈R(𝐶) supp (𝑟) conf (𝑟)

. (7)

In the experiments, we adopt 10-fold cross validation to
test the average classification accuracy of Top𝑘IR classifier
and compare it with NR [8] and CBA and IRG [14] classifiers.
The results in Table 4 show that Top𝑘IR classifier performs
much better than CBA and IRG classifiers. Compared with
CBA which is built with the Top-1 covering irreducible
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Figure 6: Varying 𝛼.

Table 4: The accuracy and complexity of classifiers.

Dataset Acc. of Top𝑘IR Acc. of NR Acc. of CBA Acc. of IRG AL. of Top𝑘IR AL. of Top𝑘IR
Leukemia 96.84% 95.76% 91.18% 64.71% 3.42 4.80
DLBCL 94.97% 92.13% 82.16% 84.42% 3.16 4.95
HBC 92.68% 93.31% 85.61% 83.28% 2.45 4.25
PC 96.06% 91.28% 84.65% 88.24% 3.85 5.25

contrast sequence rules, Top𝑘IR classifies much fewer test
data using default class. IRG classifier is built based on the
association rules, which illustrates that sequence rules can
reflect data characteristics better. Top𝑘IR classifier is more
accurate than NR classifier on most dataset; however, it uses
much fewer rules (𝑚 ∗ 𝑘) to build classifier than NR. In
our experiment, 𝑘 = 10 and the rules used in NR classifier
are usually more than ten thousand [8]. Furthermore, we
discover that the average length (AL for short) of sequence
rules used inTop𝑘IR classifier is shorter than that of IRG.This
result verifies that the MineTop𝑘IRs could provide as high as
diagnostic accuracy using as fewer as possible genes, which is
very valuable for biologists to further follow up biological or
clinical validation of selected genes [15].

5.2.2. Biological Significance. Different from the traditional
methods, MineTop𝑘IRs characterizes the pathogenesis of a
disease from a sequence-like point of view, which incorpo-
rates the orders among genes and can be seen as the pathway
of disease causing. In this part, by showing some interesting
results from Leukemia dataset [1], we emphasize the fact that
not only can MineTop𝑘IRs find the genes revealed by the
traditional methods, but also it can find some genes ignored
by the traditional methods.

Table 5 lists the top-10 genesmost frequently occurring in
the discovered Top𝑘IRs for the diagnosis of “AML” samples
and “ALL” samples, where the genes with “∗” mean they
are also included in the benchmark, that results from eight
statistics based gene ranking methods [16]. The two most
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Table 5: Common frequent genes appear in Top𝑘IRs.

Frequent gene in Top𝑘IRs Frequency (%) Frequent gene in Top𝑘IRs Frequency (%)
TIMP2∗ 19.2 PTPRCAP∗ 7.9
ZFP36∗ 12.5 CCT5 5.6
MGST1∗ 12.4 CMYB 5.2
MYCL1 11 PSMA6∗ 4.9
LYZ1∗ 10.6 GIRX∗ 4.6

frequent genes appear in Table 5, which also appear in the
benchmark. Gene TIMP2 is amember of the TIMP gene fam-
ily, the proteins encoded by which are natural inhibitors of
the matrix metalloproteinases. Reference [17] reveals that the
transcription of TIMP2 in SHI-1 cells of AML is higher than
other leukemic cells. Gene ZFP36 expression is upregulated
in human T-lymphotropic virus 1- (HTLV-1-) infected cells.
HTLV-1 is associated with adult T-cell leukemia/lymphoma
[18].

In addition, for the genes without “∗”, though they are
not in the benchmark, we still cannot ignore these genes. For
example, the gene sequence ⟨𝑅𝐵𝐿2 𝐷𝐻𝑃𝑆 𝐶𝐶𝑇5⟩ including

frequent gene CCT5 in Table 5 appears in most “ALL” sample
but fewer occurs in “AML” samples. But, any of its subse-
quence does not have the ability of distinguishing samples
which indicates that any gene in ⟨𝑅𝐵𝐿2 𝐷𝐻𝑃𝑆 𝐶𝐶𝑇5⟩ is
irreducible and well reflects the synergy between the genes.
Thus, these genes also have very important potential values
for biologists to further explain.

6. Conclusion

In this paper, we study an important problem in bioinformat-
ics, that is, discovering diagnostic gene patterns from gene
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expression data. Unlike any previous work on this topic, we
tackle the problem by exploiting the ordered expression trend
of genes, which can better reflect the gene regulation pathway.
In order to capture the more accurate diagnosis by using
as few as possible rules, we propose the concept of top-𝑘
covering irreducible contrast sequence rules for each sample
of gene expression data. Further, an efficient method called
MineTop𝑘IRs is developed to find all Top𝑘IRs. Considering
the real noisy scenario in gene expression data, we first use an
EWave model, which, essentially different from the current
models, characterizes gene expression data from a sequence-
like perspective. Then, we can use MineTop𝑘IRs to discover
the bounded number of Top𝑘IRs in one mining process,
which can directly be used to build classifier. Extensive
experiments conducted on both synthetic and real datasets
show thatMineTop𝑘IRs is both effective and efficiency. Itmay
offer a new point of view from diagnostic gene discovery to
the biologists.
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