160 research outputs found

    A Smartphone APP for Health and Tourism Promotion

    Get PDF
    The main purpose of this study is to develop an APP by integrating GPS to provide the digitized information of local cultural spots to guide tourists for tourism promotion and the digitized information of mountaineering trails to monitor energy expenditure (EE) for health promotion. The provided cultural information is also adopted for educational purpose. Extended Technology Acceptance Model (TAM) was used to evaluate the usefulness and behavior intention of the provided information and functions in the developed system. Most users agreed that the system is useful for health promotion, tourism promotion, and folk-culture education. They also showed strong intention and positive attitude toward continuous use of the APP

    Mechanisms underlying Actinobacillus pleuropneumoniae exotoxin ApxI induced expression of IL-1β, IL-8 and TNF-α in porcine alveolar macrophages

    Get PDF
    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) causes fibrino-hemorrhagic necrotizing pleuropneumonia in pigs. Production of proinflammatory mediators in the lungs is an important feature of A. pleuropneumoniae infection. However, bacterial components other than lipopolysaccharide involved in this process remain unidentified. The goals of this study were to determine the role of A. pleuropneumoniae exotoxin ApxI in cytokine induction and to delineate the underlying mechanisms. Using real-time quantitative PCR analysis, we found native ApxI stimulated porcine alveolar macrophages (PAMs) to transcribe mRNAs of IL-1β, IL-8 and TNF-α in a concentration- and time-dependent manner. Heat-inactivation or pre-incubation of ApxI with a neutralizing antiserum attenuated ApxI bioactivity to induce cytokine gene expression. The secretion of IL-1β, IL-8 and TNF-α protein from PAMs stimulated with ApxI was also confirmed by quantitative ELISA. In delineating the underlying signaling pathways contributing to cytokine expression, we observed mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK) were activated upon ApxI stimulation. Administration of an inhibitor specific to p38 or JNK resulted in varying degrees of attenuation on ApxI-induced cytokine expression, suggesting the differential regulatory roles of p38 and JNK in IL-1β, IL-8 and TNF-α production. Further, pre-incubation of PAMs with a CD18-blocking antibody prior to ApxI stimulation significantly reduced the activation of p38 and JNK, and subsequent expression of IL-1β, IL-8 or TNF-α gene, indicating a pivotal role of β2 integrins in the ApxI-mediated effect. Collectively, this study demonstrated ApxI induces gene expression of IL-1β, IL-8 and TNF-α in PAMs that involves β2 integrins and downstream MAPKs

    Omics approach for generating a high-yield CHO cell line producing monoclonal antibodies

    Get PDF
    Chinese hamster ovary (CHO) cells are extensively used for the industrial manufacture of therapeutic antibodies. Generating high producing cell lines for secretory protein production requires knowing the bottleneck in the cellular machinery for protein expression. Integration site of gene of interest (GOI) is one of the important factors that influence the protein productivity. Even though screening of cells randomly integrated GOI can select high producing cells, the selected cell might not stable due to the chromosome instability. Here, we would like to look for host integration sites where GOI is high yield and stable by screening a single copy integration system. We developed several methods to identify integration sites including PCR based, whole genome sequencing based, and a platform to integrate a single copy of GOI into host genome. By determining the integration sites of the high producing clones, we can elucidate the major high yield sites for target gene expression. We have also employed the genome-editing tool, TALEN and CRISPR/cas9 to specifically integrate the vector with an antibody gene into two integration sites of CHO genome. Our data showed, IS1 and IS2 integration sites can be actively edited and specifically integrated an antibody expression vector of 15kb by either TALEN or CRISPR/Cas9. We successfully established site specifically integrated cell pools and expanded the FACS-sorted single cell into a cell line. Each single cell derived cell lines was confirmed by junction-PCR and sequence analysis. Furthermore, these single cells derived CHO cell lines are shown to express antibody gene with high titer. With the combination of omics knowledge and toolbox, including CHO genomics, transcriptomics and CHO specific microarray, GOI can be stably and highly produced

    The novel synthetic compound 6-acetyl-9-(3,4,5-trimethoxybenzyl)-9H-pyrido[2,3-b]indole induces mitotic arrest and apoptosis in human COLO 205 cells

    Get PDF
    A novel synthetic compound 6-acetyl-9-(3,4,5-trimetho-xybenzyl)-9H-pyrido[2,3-b]indole (HAC-Y6) demonstrated selective anticancer activity. In the present study, COLO 205 cells were treated with HAC-Y6 to investigate the molecular mechanisms underlying its effects. HAC-Y6 induced growth inhibition, G2/M arrest and apoptosis in COLO 205 cells with an IC50 of 0.52±0.035 µM. Annexin V/PI double staining demonstrated the presence of apoptotic cells. JC-1 staining analysis showed that HAC-Y6 decreased mitochondrial membrane potential in support of apoptosis. An immunostaining assay revealed that HAC-Y6 depolymerized microtubules. Treatment of COLO 205 cells with HAC-Y6 resulted in increased expression of BubR1 and cyclin B1 and decreased expression of aurora A, phospho-aurora A, aurora B, phospho-aurora B and phospho-H3. HAC-Y6 treatment increased protein levels of active caspase-3, caspase-9, Endo G, AIF, Apaf-1, cytochrome c and Bax, but treatment with the compound caused reduced levels of procaspase-3, procaspase-9, Bcl-xL and Bcl-2. Overall, our results suggest that HAC-Y6 exerts anticancer effects by disrupting microtubule assembly and inducing G2/M arrest, polyploidy and apoptosis via mitochondrial pathways in COLO 205 cells

    Identification of Lactoferricin B Intracellular Targets Using an Escherichia coli Proteome Chip

    Get PDF
    Lactoferricin B (LfcinB) is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO) analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP) assays. Sixteen proteins were identified, and an E. coli interaction database (EcID) analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA) cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach

    Intra-Arterial Chemotherapy with Doxorubicin and Cisplatin Is Effective for Advanced Hepatocellular Cell Carcinoma

    Get PDF
    Advanced hepatocellular carcinoma (HCC) remains a fatal disease even in the era of targeted therapies. Intra-arterial chemotherapy (IACT) can provide therapeutic benefits for patients with locally advanced HCC who are not eligible for local therapies or are refractory to targeted therapies. The aim of this retrospective study was to analyze the effect of IACT with cisplatin and doxorubicin on advanced HCC. Methods. Patients with advanced HCC who were not eligible for local therapies or were refractory to sorafenib received doxorubicin (50 mg/m2) and cisplatin (50 mg/m2) infusions into the liver via the transhepatic artery. Between January 2005 and December 2011, a total of 50 patients with advanced HCC received this treatment regimen. The overall response rate (ORR) was 22% in all treated patients. In patients who received at least 2 cycles of IACT, the ORR was 36.7%, and the disease control rate was 70%. Survival rate differed significantly between patients who received only one cycle of IACT (group I) and those who received several cycles (group II). The median progression-free survival was 1.3 months and 5.8 months in groups I and II, respectively (P<0.0001). The median overall survival was 8.3 months for all patients and was 3.1 months and 12.0 months in groups I and II, respectively (P<0.0001). The most common toxicity was alopecia. Four patients developed grade 3 or 4 leukopenia. Worsening of liver function, nausea, and vomiting were uncommon side effects. This study demonstrated clinical efficacy and tolerable side effects of repeated IACT with doxorubicin and cisplatin in advanced HCC. Our regimen can be an alternative choice for patients with adequate liver function who do not want to receive continuous infusion of IACT

    Impacts of Coulomb Interactions on the Magnetic Responses of Excitonic Complexes in Single Semiconductor Nanostructures

    Get PDF
    We report on the diamagnetic responses of different exciton complexes in single InAs/GaAs self-assembled quantum dots (QDs) and quantum rings (QRs). For QDs, the imbalanced magnetic responses of inter-particle Coulomb interactions play a crucial role in the diamagnetic shifts of excitons (X), biexcitons (XX), and positive trions (X−). For negative trions (X−) in QDs, anomalous magnetic responses are observed, which cannot be described by the conventional quadratic energy shift with the magnetic field. The anomalous behavior is attributed to the apparent change in the electron wave function extent after photon emission due to the strong Coulomb attraction by the hole in its initial state. In QRs, the diamagnetic responses of X and XX also show different behaviors. Unlike QDs, the diamagnetic shift of XX in QRs is considerably larger than that of X. The inherent structural asymmetry combined with the inter-particle Coulomb interactions makes the wave function distribution of XX very different from that of X in QRs. Our results suggest that the phase coherence of XX in QRs may survive from the wave function localization due to the structural asymmetry or imperfections
    corecore