944 research outputs found

    Development of Computer Vision-Enhanced Smart Golf Ball Retriever

    Get PDF
    An automatic vehicle system was developed to assist golfers in collecting golf balls from a practice field. Computer vision methodology was utilized to enhance the detection of golf balls in shallow and/or deep grass regions. The free software OpenCV was used in this project because of its powerful features and supported repository. The homemade golf ball picker was built with a smart recognition function for golf balls and can lock onto targets by itself. A set of field tests was completed in which the rate of golf ball recognition was as high as 95%. We report that this homemade smart golf ball picker can reduce the tremendous amount of labor associated with having to gather golf balls scattered throughout a practice field

    Bandwidth allocation and pricing problem for a duopoly market

    Get PDF
    This research discusses the Internet service provider (ISP) bandwidth allocation and pricing problems for a duopoly bandwidth market with two competitive ISPs. According to the contracts between Internet subscribers and ISPs, Internet subscribers can enjoy their services up to their contracted bandwidth limits. However, in reality, many subscribers may experience the facts that their on-line requests are denied or their connection speeds are far below their contracted speed limits. One of the reasons is that ISPs accept too many subscribers as their subscribers. To avoid this problem, ISPs can set limits for their subscribers to enhance their service qualities. This paper develops constrained nonlinear programming to deal with this problem for two competitive ISPs. The condition for reaching the equilibrium between the two competitive firms is derived. The market equilibrium price and bandwidth resource allocations are derived as closed form solutions

    Enteric bacterial loads are associated with interleukin-6 levels in systemic inflammatory response syndrome patients

    Get PDF
    AbstractBackgroundLoss of intestinal integrity is a critical contributor to excessive inflammation following severe trauma or major surgery. In the case of enterocyte damage, intestinal fatty acid-binding protein (IFABP) is released into the extracellular space. Excessive production of interleukin (IL)-6 can induce systemic inflammatory response syndrome (SIRS). However, the correlation of IL-6 with gut barrier failure and bacterial translocation in critically ill patients has not been well characterized.PurposesTo define the relationship between enteric bacterial loads and IL-6 levels in patients with SIRS.MethodsVariables related to prognosis and treatment were measured in 85 patients with SIRS upon admission to the emergency room. IL-6 and IFABP were measured using an enzyme-linked immunosorbent assay. Enteric bacterial loads in blood were measured through quantitative real-time polymerase chain reaction with primers specific for enteric bacteria.ResultsMultivariate analysis revealed a positive correlation between enteric bacterial loads and IL-6 levels in blood. Elevated IFABP concentration was associated with low blood pressure, high respiration rate, hyperglycemia, and high Sequential Organ Failure Assessment score. Elevated C-reactive protein concentrations were associated with higher soluble CD14 levels in blood.ConclusionEnterocyte damage is associated with hypotension and tachypnia in patients with SIRS. Gut function failure may permit enteric bacteria to enter the blood, thereby elevating IL-6 levels and inducing a systemic inflammatory response, resulting in multiple organ failure

    Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK

    Get PDF
    AbstractMechanical forces induced by interstitial fluid flow in and surrounding tissues and by blood/lymphatic flow in vessels may modulate cancer cell invasion and metastasis and anticancer drug delivery. Our previous study demonstrated that laminar flow-induced shear stress induces G2/M arrest in tumor cells. However, whether shear stress modulates final cell fate remains unclear. In this study, we investigated the role of flow-induced shear stress in modulating the survival of four human tumor cell lines, i.e., Hep3B hepatocarcinoma cells, MG63 osteosarcoma cells, SCC25 oral squamous carcinoma cells, and A549 carcinomic alveolar basal epithelial cells. Laminar shear stress (LSS) ranging from 0.5 to 12dyn/cm2 induced death of these four tumor cell lines. In contrast to LSS at 0.5dyn/cm2, oscillatory shear stress (OSS) at 0.5±4dyn/cm2 cannot induce cancer cell death. Both LSS and OSS had no effect on human normal hepatocyte, lung epithelial, and endothelial cells. Application of LSS to these four cell lines increased the percentage of cells stained positively for annexin V–FITC, with up-regulations of cleaved caspase-8, -9, and -3, and PARP. In addition, LSS also induced Hep3B cell autophagy, as detected by acidic vesicular organelle formation, LC3B transformation, and p62/SQSTM1 degradation. By transfecting with small interfering RNA, we found that the shear-induced apoptosis and autophagy are mediated by bone morphogenetic protein receptor type (BMPR)-IB, BMPR-specific Smad1 and Smad5, and p38 mitogen-activated protein kinase in Hep3B cells. Our findings provide insights into the molecular mechanisms by which shear stress induces apoptosis and autophagy in tumor cells

    Aqueous Extract of Paeonia suffruticosa Inhibits Migration and Metastasis of Renal Cell Carcinoma Cells via Suppressing VEGFR-3 Pathway

    Get PDF
    Renal cell carcinoma (RCC) cells are characterized by strong drug resistance and high metastatic incidence. In this study, the effects of ten kinds of Chinese herbs on RCC cell migration and proliferation were examined. Aqueous extract of Paeonia suffruticosa (PS-A) exerted strong inhibitory effects on cancer cell migration, mobility, and invasion. The results of mouse xenograft experiments showed that the treatment of PS-A significantly suppressed tumor growth and pulmonary metastasis. We further found that PS-A markedly decreased expression of VEGF receptor-3 (VEGFR-3) and phosphorylation of FAK in RCC cells. Moreover, the activation of Rac-1, a modulator of cytoskeletal dynamics, was remarkably reduced by PS-A. Additionally, PS-A suppressed polymerization of actin filament as demonstrated by confocal microscopy analysis and decreased the ratio of F-actin to G-actin in RCC cells, suggesting that PS-A inhibits RCC cell migration through modulating VEGFR-3/FAK/Rac-1 pathway to disrupt actin filament polymerization. In conclusion, this research elucidates the effects and molecular mechanism for antimigration of PS-A on RCC cells and suggests PS-A to be a therapeutic or adjuvant strategy for the patients with aggressive RCC

    Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells

    Downregulation of SIRT1 and GADD45G genes and left atrial fibrosis induced by right ventricular dependent pacing in a complete atrioventricular block pig model

    Get PDF
    The molecular and genetic mechanisms underlying left atrial (LA) enlargement and atrial fibrosis following right ventricular (RV) dependent pacing remain unclear. Our objective was to investigate genetic expressions in the LA of pigs subjected to RV pacing for atrioventricular block (AVB), as well as to identify the differential gene expressions affected by biventricular (BiV) pacing. We established an AVB pig model and divided the subjects into three groups: a sham control group, an RV pacing group, and a BiV pacing group. Differential expression genes (DEGs) analyses conducted through next-generation sequencing (NGS) and enrichment analyses were employed to identify genes with altered expression in the LA myocardium. The RV pacing group showed a significant increase in extracellular fibrosis in the LA myocardium compared to the control group. NGS analysis revealed suppressed expression of the sirtuin signaling pathway in the RV pacing group. Among the DEGs within this pathway, GADD45G was found to be downregulated in the RV pacing group and upregulated in the BiV pacing group. Remarkably, the BiV pacing group exhibited elevated levels of GADD45G protein. In our study, we observed significant downregulation of SIRT1 and GADD45G genes, which are associated with the sirtuin signaling pathway, in the LA myocardium of the RV pacing group when compared to the control group. Moreover, these genes, which were downregulated in the RV pacing group, displayed a noteworthy upregulation in the BiV pacing group when compared to the RV pacing group

    KCNN2 polymorphisms and cardiac tachyarrhythmias

    Get PDF
    Potassium calcium-activated channel subfamily N member 2 (KCNN2) encodes an integral membrane protein that forms small-conductance calcium-activated potassium (SK) channels. Recent studies in animal models show that SK channels are important in atrial and ventricular repolarization and arrhythmogenesis. However, the importance of SK channels in human arrhythmia remains unclear. The purpose of the present study was to test the association between genetic polymorphism of the SK2 channel and the occurrence of cardiac tachyarrhythmias in humans. We enrolled 327 Han Chinese, including 72 with clinically significant ventricular tachyarrhythmias (VTa) who had a history of aborted sudden cardiac death (SCD) or unexplained syncope, 98 with a history of atrial fibrillation (AF), and 144 normal controls. We genotyped 12 representative tag single nucleotide polymorphisms (SNPs) across a 141-kb genetic region containing the KCNN2 gene; these captured the full haplotype information. The rs13184658 and rs10076582 variants of KCNN2 were associated with VTa in both the additive and dominant models (odds ratio [OR] 2.89, 95% confidence interval [CI] = 1.505-5.545, P = 0.001; and OR 2.55, 95% CI = 1.428-4.566, P = 0.002, respectively). After adjustment for potential risk factors, the association remained significant. The population attributable risks of these 2 variants of VTa were 17.3% and 10.6%, respectively. One variant (rs13184658) showed weak but significant association with AF in a dominant model (OR 1.91, CI = 1.025-3.570], P = 0.042). There was a significant association between the KCNN2 variants and clinically significant VTa. These findings suggest an association between KCNN2 and VTa; it also appears that KCNN2 variants may be adjunctive markers for risk stratification in patients susceptible to SCD

    Elevated BCRP/ABCG2 Expression Confers Acquired Resistance to Gefitinib in Wild-Type EGFR-Expressing Cells

    Get PDF
    The sensitivity of non-small cell lung cancer (NSCLC) patients to EGFR tyrosine kinase inhibitors (TKIs) is strongly associated with activating EGFR mutations. Although not as sensitive as patients harboring these mutations, some patients with wild-type EGFR (wtEGFR) remain responsive to EGFR TKIs, suggesting that the existence of unexplored mechanisms renders most of wtEGFR-expressing cancer cells insensitive.Here, we show that acquired resistance of wtEGFR-expressing cancer cells to an EGFR TKI, gefitinib, is associated with elevated expression of breast cancer resistance protein (BCRP/ABCG2), which in turn leads to gefitinib efflux from cells. In addition, BCRP/ABCG2 expression correlates with poor response to gefitinib in both cancer cell lines and lung cancer patients with wtEGFR. Co-treatment with BCRP/ABCG2 inhibitors enhanced the anti-tumor activity of gefitinib.Thus, BCRP/ABCG2 expression may be a predictor for poor efficacy of gefitinib treatment, and targeting BCRP/ABCG2 may broaden the use of gefitinib in patients with wtEGFR
    corecore