5 research outputs found

    Metal-Free Direct 1,6- and 1,2-Difunctionalization Triggered by Radical Trifluoromethylation of Alkenes

    No full text
    A metal-free direct remote C–H functionalization triggered by radical trifluoromethylation of alkenes was explored, realizing highly selective 1,6-difunctionalization of alkenes toward valuable trifluoromethyl α-hydroxycarbonyl compounds. Furthermore, a metal-free direct intermolecular regioselective 1,2-oxytrifluoromethylation of alkenes is also disclosed. With Togni’s reagent as both the CF<sub>3</sub> source and oxidant, the reaction exhibits a broad substrate scope with excellent functionality tolerance under mild metal-free conditions, thus showing great potential for synthetic utility

    Metal-Free Direct 1,6- and 1,2-Difunctionalization Triggered by Radical Trifluoromethylation of Alkenes

    No full text
    A metal-free direct remote C–H functionalization triggered by radical trifluoromethylation of alkenes was explored, realizing highly selective 1,6-difunctionalization of alkenes toward valuable trifluoromethyl α-hydroxycarbonyl compounds. Furthermore, a metal-free direct intermolecular regioselective 1,2-oxytrifluoromethylation of alkenes is also disclosed. With Togni’s reagent as both the CF<sub>3</sub> source and oxidant, the reaction exhibits a broad substrate scope with excellent functionality tolerance under mild metal-free conditions, thus showing great potential for synthetic utility

    Tridentate Sulfoxide‑<i>N</i>‑olefin Hybrid Ligands in Rhodium-Catalyzed Asymmetric Allylic Substitution

    No full text
    A well-defined tridentate chiral sulfoxide-N-olefin ligand has been designed and applied in rhodium-catalyzed asymmetric allylic substitutions of racemic allylic carbonates, providing the branched allylic products in good yields with good to high enantioselectivities and excellent regioselectivities. This reaction mechanism, which involves the possible hemilability of olefin coordination on sulfoxide-N-olefin hybrid ligands with rhodium, is elaborated as well

    Nickel(0)-Catalyzed Denitrogenative Transannulation of Benzotriazinones with Alkynes: Mechanistic Insights of Chemical Reactivity and Regio- and Enantioselectivity from Density Functional Theory and Experiment

    No full text
    The mechanism of Ni(0)-catalyzed denitrogenative transannulation of 1,2,3-benzotriazin-4­(<i>3H</i>)-ones with alkynes to access isoquinolones has been comprehensively studied by a density functional theory (DFT) calculation and control experimental investigation. The results indicate that the transformations proceed via a sequential nitrogen extrusion, carbometalation, Ni–C bond insertion, and reductive elimination process. A frontier molecular orbital (FMO) theory and natural bond orbital (NBO) analysis reveals that the advantages of substituents on chemical reactivity and regioselectivity exist for multiple reasons: (1) Phenyl groups on the N atom of benzotriazinone and/or unsymmetrical alkynes mainly account for the high reactivity and regioselectivity via its electronic effect. (2) The π···π interaction between the phenyl substituent on the alkyne and triazole ring might partially contribute to the high regioselectivity when unsymmetrical alkynes were employed as the substrates. Furthermore, DFT calculations successfully explain the origin of enantioselectivity and discrepancy of reactivities between different <i>N</i>-substituted benzotriazinones for the asymmetric construction of axially chiral isoquinolones in an atroposelective manner. The calculated results indicate that high enantioselectivity is mainly determined by the structural difference between these two transition states of the key annulation step, which lies in the orientation of the naphthyl substituent relative to the chiral ligand
    corecore