554 research outputs found
Insights into the roles of bacterial infection and antibiotics in Parkinson’s disease
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which is accompanied with the classical motor symptoms and a range of non-motor symptoms. Bacterial infection affects the neuroinflammation associated with the pathology of PD and various antibiotics have also been confirmed to play an important role not only in bacterial infection, but also in the PD progression. This mini-review summarized the role of common bacterial infection in PD and introduced several antibiotics that had anti-PD effects
The cooling intensity dependent on landscape complexity of green infrastructure in the metropolitan area
The cooling effect of green infrastructure (GI) is becoming a hot topic on mitigating the urban heat island (UHI) effect. Alterations to the green space are a viable solution for reducing land surface temperature (LST), yet few studies provide specific guidance for landscape planning adapted to the different regions. This paper proposed and defined the landscape complexity and the threshold value of cooling effect (TVoE). Results find that: (1) GI provides a better cooling effect in the densely built-up area than the green belt; (2) GI with a simple form, aggregated configuration, and low patch density had a better cooling intensity; (3) In the densely built-up area, TVoE of the forest area is 4.5 ha, while in the green belt, TVoE of the forest and grassland area is 9 ha and 2.25 ha. These conclusions will help the planners to reduce LST effectively, and employ environmentally sustainable planning
Multimodal machine learning for materials science: composition-structure bimodal learning for experimentally measured properties
The widespread application of multimodal machine learning models like GPT-4
has revolutionized various research fields including computer vision and
natural language processing. However, its implementation in materials
informatics remains underexplored, despite the presence of materials data
across diverse modalities, such as composition and structure. The effectiveness
of machine learning models trained on large calculated datasets depends on the
accuracy of calculations, while experimental datasets often have limited data
availability and incomplete information. This paper introduces a novel approach
to multimodal machine learning in materials science via composition-structure
bimodal learning. The proposed COmposition-Structure Bimodal Network (COSNet)
is designed to enhance learning and predictions of experimentally measured
materials properties that have incomplete structure information. Bimodal
learning significantly reduces prediction errors across distinct materials
properties including Li conductivity in solid electrolyte, band gap, refractive
index, dielectric constant, energy, and magnetic moment, surpassing
composition-only learning methods. Furthermore, we identified that data
augmentation based on modal availability plays a pivotal role in the success of
bimodal learning
Improving Lens Flare Removal with General Purpose Pipeline and Multiple Light Sources Recovery
When taking images against strong light sources, the resulting images often
contain heterogeneous flare artifacts. These artifacts can importantly affect
image visual quality and downstream computer vision tasks. While collecting
real data pairs of flare-corrupted/flare-free images for training flare removal
models is challenging, current methods utilize the direct-add approach to
synthesize data. However, these methods do not consider automatic exposure and
tone mapping in image signal processing pipeline (ISP), leading to the limited
generalization capability of deep models training using such data. Besides,
existing methods struggle to handle multiple light sources due to the different
sizes, shapes and illuminance of various light sources. In this paper, we
propose a solution to improve the performance of lens flare removal by
revisiting the ISP and remodeling the principle of automatic exposure in the
synthesis pipeline and design a more reliable light sources recovery strategy.
The new pipeline approaches realistic imaging by discriminating the local and
global illumination through convex combination, avoiding global illumination
shifting and local over-saturation. Our strategy for recovering multiple light
sources convexly averages the input and output of the neural network based on
illuminance levels, thereby avoiding the need for a hard threshold in
identifying light sources. We also contribute a new flare removal testing
dataset containing the flare-corrupted images captured by ten types of consumer
electronics. The dataset facilitates the verification of the generalization
capability of flare removal methods. Extensive experiments show that our
solution can effectively improve the performance of lens flare removal and push
the frontier toward more general situations.Comment: ICCV 202
- …