14 research outputs found

    DataSheet_1_Microbial communities associated with epilithic algal matrix with different morphological characters in Luhuitou fringing reef.docx

    No full text
    The microbiota is an important component of the epilithic algal matrix (EAM) and plays a central role in the biogeochemical cycling of important nutrients in coral reef ecosystems. Insufficient studies on EAM microbiota diversity have led to a limited understanding of the ecological functions of EAMs in different states. To explore the microbial community of EAMs in the Luhuitou fringing reef in Sanya, China, which has undergone the incessant expansion and domination of algae over the past several decades, investigations were conducted in the reef’s intertidal zone. Five types of substrate habitats (dead branching coral, dead massive coral, dead flat coral, granite block, and concrete block) were selected, and their microbial communities were analyzed by high-throughput sequencing of EAM holobionts using the 16S rDNA V4 region. Proteobacteria was the most abundant group, accounting for more than 70% of reads of the microbial composition across all sites, followed by Cyanobacteria (15.89%) and Bacteroidetes (5.93%), respectively. Cluster analysis divided all microbial communities into three groups, namely short, medium, and long EAMs. Algal length was the most important morphological factor impacting the differences in the composition of the EAM microbiota. The three EAM groups had 52 common OTUs and 78.52% common sequences, among which the most abundant were Vibrio spp. and Photobacterium spp. The three types of EAM also had unique OTUs. The short EAMs had 238 unique OTUs and 48.61% unique sequences, mainly in the genera Shewanella and Cyanobacterium. The medium EAMs contained 130 unique OTUs and 4.36% unique sequences, mainly in the genera Pseudomonas and Bacillus. The long EAMs only had 27 unique OTUs and 4.13% unique sequences, mainly in the genus Marinobacter. Compared with short EAM, medium and long EAM had a lower proportion of autotrophic bacteria and higher proportion of potential pathogenic bacteria. It is suggested that EAMs with different phenotypes have different microbial compositions, and the ecological function of the EAM microbiota changes from autotrophic to pathogenic with an increase in algal length. As EAMs have expanded on coastal coral reefs worldwide, it is essential to comprehensively explore the community structure and ecological role of their microbial communities.</p

    Contact Engineering of III-Nitrides and Metal Schemes toward Efficient Deep-Ultraviolet Light-Emitting Diodes

    No full text
    Throughout the development of III-nitride electronic and optoelectronic devices, electrically interfacing III-nitride semiconductors and metal schemes has been a long-standing issue that determines the contact resistance and operation voltage, which are tightly associated with the device performance and stability. Compared to the main research focus of the crystal quality of III-nitride semiconductors, the equally important contact interface between III-nitrides and metal schemes has received relatively less attention. Here, we demonstrate a comprehensive contact engineering strategy to realize low resistance to Al-rich n-AlGaN via pretreatment and metal scheme optimization. Prior to the metal deposition, the introduction of CHF3 treatment is conducive to the substantial resistance reduction, with the effect becoming more distinct by prolonging the treatment time. Furthermore, we compare different metal schemes, namely, Ti/Al/Ti/Au, Ti/Al/Ti/Pt/Au, and Cr/Ti/Al/Ti/Pt/Au, to form electrical contact on n-AlGaN. From microscale analysis based on multiple characterization methods, we reveal the correlation between electrical properties and the nature of the contact interface, attributing the contact improvement to the low-resistance Pt- and Cr-related alloy formation. Under the circumstance that no efforts have been devoted to optimizing the epitaxial growth, engineering the metal–semiconductor contact properties alone leads to a resistance value of 8.96 × 10–5 Ω·cm2. As a result, the fabricated deep-ultraviolet LEDs exhibit an ultralow forward voltage of 5.47 V at 30 A/cm2 and a 33% increase in the peak wall-plug efficiency

    Long non-coding RNA NCK1-AS1 functions as a ceRNA to regulate cell viability and invasion in esophageal squamous cell carcinoma via microRNA-133b/ENPEP axis

    No full text
    This study is designed to explore the role of long non-coding RNAs (lncRNAs) NCK1-AS1 in proliferative and invasive activities of esophageal squamous cell carcinoma (ESCC) cells by binding to microRNA-133b (miR-133b) to regulate ENPEP. Differentially expressed lncRNAs, miRs, genes and their targeting relationships were screened on ESCC-related gene expression datasets GSE17351 and GSE6188. The targeting relationships among NCK1-AS1, miR-133b, and ENPEP were verified using functional assays. Loss- and gain- of function assays were carried out to examine the roles of NCK1-AS1, miR-133b, and ENPEP in ESCC cell proliferative, invasive, migrative and apoptotic abilities as well as tumorigenesis in vivo. Elevated NCK1-AS1 and ENPEP but reduced miR-133b expression were found in ESCC. NCK1-AS1 knockdown or miR-133b overexpression inhibited the malignant properties of ESCC cells as well as tumorigenesis in vivo. NCK1-AS1 regulated the ENPEP expression by competitively binding to miR-133b. ENPEP overexpression reversed inhibition of NCK1-AS1 knockdown on the function of ESCC cells. This study provides evidence that silencing NCK1-AS1 inhibits expression of ENPEP by sponging miR-133b, thereby suppressing ESCC.</p

    DataSheet1_Constructing spin-structured focal fields for chiral-sensitive trapping with dielectric metalens.docx

    No full text
    Engineering the chiral field is crucial for the flexible manipulation of chiral particles. Some complex optical setups for constructing spin-structured fields have been well developed to sort particles with opposite chiralities toward opposite transversal directions. In this work, we demonstrate the robust construction of a class of focal fields that possess laterally variant optical spin angular momentum by using the monolayer dielectric metalens. By utilizing the simultaneous modulation capacity of the phase and polarization of the dielectric metalens, we can establish a line focus with laterally tailored gradient optical helicity. The focusing property of this metalens and the polarization structure of the focal field are theoretically analyzed using a hybrid vector-focusing model and experimentally demonstrated by NA = 0.2 and 0.5 samples. We illustrate that this type of gradient helicity offers opportunities to induce a chirality-sensitive lateral force for chiral particles.</p

    Table1_A Comprehensive Analysis of HAVCR1 as a Prognostic and Diagnostic Marker for Pan-Cancer.DOCX

    No full text
    Hepatitis A virus cellular receptor (HAVCR1) is a type-1 integral membrane glycoprotein that plays a key role in immunity and renal regeneration and is abnormally expressed in various tumor types. Nonetheless, the function of HAVCR1 in pan-cancer remains unknown. In this study, we comprehensively analyzed the expression and promoter methylation level of HAVCR1 and assessed the immune cell infiltration, correlation between stromal and immune cell admixture, CD (Cluster of Differentiation) and HAVCR1 expression and prognostic value of HAVCR1 mRNA expression in Liver hepatocellular carcinoma (LIHC) and Pancreatic adenocarcinoma (PAAD). Our results showed that HAVCR1 was overexpressed while the promoter methylation of HAVCR1 was decreased in Liver hepatocellular carcinoma and Pancreatic adenocarcinoma. HAVCR1 was associated with increased infiltration of B cells, CD8 cells, macrophages, neutrophils and Dendritic cells in Liver hepatocellular carcinoma and Pancreatic adenocarcinoma. HAVCR1 expression was positively correlated with the immune, stromal and estimate scores of Pancreatic adenocarcinoma and the stromal and estimate scores of Liver hepatocellular carcinoma. Furthermore, HAVCR1 expression was correlated with other immune molecules such as HHLA2 (Human endogenous retrovirus-H long terminal repeat-associating protein 2), CD44 and TNFRSF4 (TNF Receptor Superfamily Member 4) in Liver hepatocellular carcinoma and Pancreatic adenocarcinoma. During Kaplan-Meier analysis, high HAVCR1 expression in Liver hepatocellular carcinoma and Pancreatic adenocarcinoma correlated with poor survival. A marginally significant p-value (p = 0.051) was obtained when the relationship between HAVCR1 expression in Liver hepatocellular carcinoma and prognosis was analyzed, attributed to the small sample size. Overall, we provided compelling evidence that HAVCR1 could be a prognostic and diagnostic marker for Liver hepatocellular carcinoma and Pancreatic adenocarcinoma.</p
    corecore