19,396 research outputs found

    Diffusion Strategies Outperform Consensus Strategies for Distributed Estimation over Adaptive Networks

    Full text link
    Adaptive networks consist of a collection of nodes with adaptation and learning abilities. The nodes interact with each other on a local level and diffuse information across the network to solve estimation and inference tasks in a distributed manner. In this work, we compare the mean-square performance of two main strategies for distributed estimation over networks: consensus strategies and diffusion strategies. The analysis in the paper confirms that under constant step-sizes, diffusion strategies allow information to diffuse more thoroughly through the network and this property has a favorable effect on the evolution of the network: diffusion networks are shown to converge faster and reach lower mean-square deviation than consensus networks, and their mean-square stability is insensitive to the choice of the combination weights. In contrast, and surprisingly, it is shown that consensus networks can become unstable even if all the individual nodes are stable and able to solve the estimation task on their own. When this occurs, cooperation over the network leads to a catastrophic failure of the estimation task. This phenomenon does not occur for diffusion networks: we show that stability of the individual nodes always ensures stability of the diffusion network irrespective of the combination topology. Simulation results support the theoretical findings.Comment: 37 pages, 7 figures, To appear in IEEE Transactions on Signal Processing, 201

    On the Influence of Informed Agents on Learning and Adaptation over Networks

    Full text link
    Adaptive networks consist of a collection of agents with adaptation and learning abilities. The agents interact with each other on a local level and diffuse information across the network through their collaborations. In this work, we consider two types of agents: informed agents and uninformed agents. The former receive new data regularly and perform consultation and in-network tasks, while the latter do not collect data and only participate in the consultation tasks. We examine the performance of adaptive networks as a function of the proportion of informed agents and their distribution in space. The results reveal some interesting and surprising trade-offs between convergence rate and mean-square performance. In particular, among other results, it is shown that the performance of adaptive networks does not necessarily improve with a larger proportion of informed agents. Instead, it is established that the larger the proportion of informed agents is, the faster the convergence rate of the network becomes albeit at the expense of some deterioration in mean-square performance. The results further establish that uninformed agents play an important role in determining the steady-state performance of the network, and that it is preferable to keep some of the highly connected agents uninformed. The arguments reveal an important interplay among three factors: the number and distribution of informed agents in the network, the convergence rate of the learning process, and the estimation accuracy in steady-state. Expressions that quantify these relations are derived, and simulations are included to support the theoretical findings. We further apply the results to two models that are widely used to represent behavior over complex networks, namely, the Erdos-Renyi and scale-free models.Comment: 35 pages, 8 figure

    Probability of Slowroll Inflation in the Multiverse

    Full text link
    Slowroll after tunneling is a crucial step in one popular framework of the multiverse---false vacuum eternal inflation (FVEI). In a landscape with a large number of fields, we provide a heuristic estimation for its probability. We find that the chance to slowroll is exponentially suppressed, where the exponent comes from the number of fields. However, the relative probability to have more e-foldings is only mildly suppressed as NeαN_e^{-\alpha} with α3\alpha\sim3. Base on these two properties, we show that the FVEI picture is still self-consistent and may have a strong preference between different slowroll models.Comment: version 3, 21 pages, resubmit to PRD recommanded by refere

    Replica Monte Carlo Simulation (Revisited)

    Full text link
    In 1986, Swendsen and Wang proposed a replica Monte Carlo algorithm for spin glasses [Phys. Rev. Lett. 57 (1986) 2607]. Two important ingredients are present, (1) the use of a collection of systems (replicas) at different of temperatures, but with the same random couplings, (2) defining and flipping clusters. Exchange of information between the systems is facilitated by fixing the tau spin (tau=sigma^1\sigma^2) and flipping the two neighboring systems simultaneously. In this talk, we discuss this algorithm and its relationship to replica exchange (also known as parallel tempering) and Houdayer's cluster algorithm for spin glasses. We review some of the early results obtained using this algorithm. We also present new results for the correlation times of replica Monte Carlo dynamics in two and three dimensions and compare them with replica exchange.Comment: For "Statistical Physics of Disordered Systems and Its Applications", 12-15 July 2004, Shonan Village Center, Hayama, Japan, 7 page

    Coupled rotor-body vibrations with inplane degrees of freedom

    Get PDF
    In an effort to understand the vibration mechanisms of helicopters, the following basic studies are considered. A coupled rotor-fuselage vibration analysis including inplane degrees of freedom of both rotor and airframe is performed by matching of rotor and fuselage impedances at the hub. A rigid blade model including hub motion is used to set up the rotor flaplag equations. For the airframe, 9 degrees of freedom and hub offsets are used. The equations are solved by harmonic balance. For a 4-bladed rotor, the coupled responses and hub loads are calculated for various parameters in forward flight. The results show that the addition of inplane degrees of freedom does not significantly affect the vertical vibrations for the cases considered, and that inplane vibrations have similar resonance trends as do flapping vibrations

    Agent fabrication and its implementation for agent-based electronic commerce

    Get PDF
    In the last decade, agent-based e-commerce has emerged as a potential role for the next generation of e-commerce. How to create agents for e-commerce applications has become a serious consideration in this field. This paper proposes a new scheme named agent fabrication and elaborates its implementation in multi-agent systems based on the SAFER (Secure Agent Fabrication, Evolution & Roaming) architecture. First, a conceptual structure is proposed for software agents carrying out e-commerce activities. Furthermore, agent module suitcase is defined to facilitate agent fabrication. With these definitions and facilities in the SAFER architecture, the formalities of agent fabrication are elaborated. In order to enhance the security of agent-based e-commerce, an infrastructure of agent authorization and authentication is integrated in agent fabrication. Our implementation and prototype applications show that the proposed agent fabrication scheme brings forth a potential solution for creating agents in agent-based e-commerce applications
    corecore