1,587 research outputs found

    Energy-Efficient Antenna Selection and Power Allocation for Large-Scale Multiple Antenna Systems with Hybrid Energy Supply

    Full text link
    The combination of energy harvesting and large-scale multiple antenna technologies provides a promising solution for improving the energy efficiency (EE) by exploiting renewable energy sources and reducing the transmission power per user and per antenna. However, the introduction of energy harvesting capabilities into large-scale multiple antenna systems poses many new challenges for energy-efficient system design due to the intermittent characteristics of renewable energy sources and limited battery capacity. Furthermore, the total manufacture cost and the sum power of a large number of radio frequency (RF) chains can not be ignored, and it would be impractical to use all the antennas for transmission. In this paper, we propose an energy-efficient antenna selection and power allocation algorithm to maximize the EE subject to the constraint of user's quality of service (QoS). An iterative offline optimization algorithm is proposed to solve the non-convex EE optimization problem by exploiting the properties of nonlinear fractional programming. The relationships among maximum EE, selected antenna number, battery capacity, and EE-SE tradeoff are analyzed and verified through computer simulations.Comment: IEEE Globecom 2014 Selected Areas in Communications Symposium-Green Communications and Computing Trac

    GreenDelivery: Proactive Content Caching and Push with Energy-Harvesting-based Small Cells

    Full text link
    The explosive growth of mobile multimedia traffic calls for scalable wireless access with high quality of service and low energy cost. Motivated by the emerging energy harvesting communications, and the trend of caching multimedia contents at the access edge and user terminals, we propose a paradigm-shift framework, namely GreenDelivery, enabling efficient content delivery with energy harvesting based small cells. To resolve the two-dimensional randomness of energy harvesting and content request arrivals, proactive caching and push are jointly optimized, with respect to the content popularity distribution and battery states. We thus develop a novel way of understanding the interplay between content and energy over time and space. Case studies are provided to show the substantial reduction of macro BS activities, and thus the related energy consumption from the power grid is reduced. Research issues of the proposed GreenDelivery framework are also discussed.Comment: 15 pages, 5 figures, accepted by IEEE Communications Magazin

    Novel Broadband Amplifier for Mid-Infrared Semiconductor laser and applications in spectroscopy

    Get PDF
    An amplifier design for broadband Mid-IR buried-hetero (BH) structure epitaxial laser is presented, and external cavity design based on this amplifier is described. Spectroscopy results characterizing such single frequency lasers are demonstrated with whispering gallery mode CaF2 disc/ball, saturated absorption in hollow waveguide and direct chemical analysis in water

    Secure Split Learning against Property Inference, Data Reconstruction, and Feature Space Hijacking Attacks

    Full text link
    Split learning of deep neural networks (SplitNN) has provided a promising solution to learning jointly for the mutual interest of a guest and a host, which may come from different backgrounds, holding features partitioned vertically. However, SplitNN creates a new attack surface for the adversarial participant, holding back its practical use in the real world. By investigating the adversarial effects of highly threatening attacks, including property inference, data reconstruction, and feature hijacking attacks, we identify the underlying vulnerability of SplitNN and propose a countermeasure. To prevent potential threats and ensure the learning guarantees of SplitNN, we design a privacy-preserving tunnel for information exchange between the guest and the host. The intuition is to perturb the propagation of knowledge in each direction with a controllable unified solution. To this end, we propose a new activation function named R3eLU, transferring private smashed data and partial loss into randomized responses in forward and backward propagations, respectively. We give the first attempt to secure split learning against three threatening attacks and present a fine-grained privacy budget allocation scheme. The analysis proves that our privacy-preserving SplitNN solution provides a tight privacy budget, while the experimental results show that our solution performs better than existing solutions in most cases and achieves a good tradeoff between defense and model usability.Comment: 23 page

    Improving Distantly-Supervised Named Entity Recognition with Self-Collaborative Denoising Learning

    Full text link
    Distantly supervised named entity recognition (DS-NER) efficiently reduces labor costs but meanwhile intrinsically suffers from the label noise due to the strong assumption of distant supervision. Typically, the wrongly labeled instances comprise numbers of incomplete and inaccurate annotation noise, while most prior denoising works are only concerned with one kind of noise and fail to fully explore useful information in the whole training set. To address this issue, we propose a robust learning paradigm named Self-Collaborative Denoising Learning (SCDL), which jointly trains two teacher-student networks in a mutually-beneficial manner to iteratively perform noisy label refinery. Each network is designed to exploit reliable labels via self denoising, and two networks communicate with each other to explore unreliable annotations by collaborative denoising. Extensive experimental results on five real-world datasets demonstrate that SCDL is superior to state-of-the-art DS-NER denoising methods.Comment: EMNLP (12 pages, 4 figures, 6 tables
    corecore