9,222 research outputs found

    Classical integrability of the O(N) nonlinear Sigma model on a half-line

    Get PDF
    The classical integrability the O(N) nonlinear sigma model on a half-line is examined, and the existence of an infinity of conserved charges in involution is established for the free boundary condition. For the case N=3 other possible boundary conditions are considered briefly.Comment: 12 Pages. Latex file (process twice

    On the sine-Gordon--Thirring equivalence in the presence of a boundary

    Get PDF
    In this paper, the relationship between the sine-Gordon model with an integrable boundary condition and the Thirring model with boundary is discussed and the reflection RR-matrix for the massive Thirring model, which is related to the physical boundary parameters of the sine-Gordon model, is given. The relationship between the the boundary parameters and the two formal parameters appearing in the work of Ghoshal and Zamolodchikov is discussed.Comment: 14 pages, Latex, to be published in Int. J. Mod. Phys. A. Two references adde

    Quantum Spin Hall Effect and Topologically Invariant Chern Numbers

    Full text link
    We present a topological description of quantum spin Hall effect (QSHE) in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings. We show that the topology of the band insulator can be characterized by a 2×22\times 2 traceless matrix of first Chern integers. The nontrivial QSHE phase is identified by the nonzero diagonal matrix elements of the Chern number matrix (CNM). A spin Chern number is derived from the CNM, which is conserved in the presence of finite disorder scattering and spin nonconserving Rashba coupling. By using the Laughlin's gedanken experiment, we numerically calculate the spin polarization and spin transfer rate of the conducting edge states, and determine a phase diagram for the QSHE.Comment: 4 pages and 4 figure

    Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse

    Full text link
    Using multi-dimensional particle-in-cell (PIC) simulations we study ion acceleration from a foil irradiated by a circularly polarized laser pulse at 1022W/cm^2 intensity. When the foil is shaped initially in the transverse direction to match the laser intensity profile, the center part of the target can be uniformly accelerated for a longer time compared to a usual flat target. Target deformation and undesirable plasma heating are effectively suppressed. The final energy spectrum of the accelerated ion beam is improved dramatically. Collimated GeV quasi-mono-energetic ion beams carrying as much as 18% of the laser energy are observed in multi-dimensional simulations. Radiation damping effects are also checked in the simulations.Comment: 4 pages, 4 figure

    Spin Hall Effect and Spin Transfer in Disordered Rashba Model

    Full text link
    Based on numerical study of the Rashba model, we show that the spin Hall conductance remains finite in the presence of disorder up to a characteristic length scale, beyond which it vanishes exponentially with the system size. We further perform a Laughlin's gauge experiment numerically and find that all energy levels cannot cross each other during an adiabatic insertion of the flux in accordance with the general level-repulsion rule. It results in zero spin transfer between two edges of the sample as each state always evolves back after the insertion of one flux quantum, in contrast to the quantum Hall effect. It implies that the topological spin Hall effect vanishes with the turn-on of disorder.Comment: 4 pages, 4 figures final versio

    Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma

    Get PDF
    It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by ωp2+ωc2/4+ωc/2\sqrt{\omega_p^2+{\omega_c^2}/{4}} + {\omega_c}/{2}, where ωp\omega_p is the plasma frequency and ωc\omega_c is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ωp2/ωc\omega_p^2/\omega_c. The B field provides a tunability in the radiation frequency, spectrum width, and field strength.Comment: 6 pages, 5 figure

    Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects

    Get PDF
    We investigate how next-generation laser pulses at 10 PW −- 200 PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ\gamma-ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by the hole boring. This pair-dominated plasma can block the laser transport and trigger an avalanche-like QED cascade, efficiently transfering the laser energy to photons. This renders a 1-μm\rm\mu m-scalelength, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such pulse in solid-target experiments than expected by classical plasma physics. Our simulations show for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.Comment: 5 figure

    Dense blocks of energetic ions driven by multi-petawatt lasers

    Get PDF
    Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to simultaneously enhance the yield and quality of laser-driven ion beams for practical applications. Here we propose a scheme to address this challenge via the use of emerging multi-petawatt lasers and a density-modulated target. The density-modulated target permits its ions to be uniformly accelerated as a dense block by laser radiation pressure. In addition, the beam quality of the accelerated ions is remarkably improved by embedding the target in a thick enough substrate, which suppresses hot electron refluxing and thus alleviates plasma heating. Particle-in-cell simulations demonstrate that almost all ions in a solid-density plasma of a few microns can be uniformly accelerated to about 25% of the speed of light by a laser pulse at an intensity around 1022 W/cm2. The resulting dense block of energetic ions may drive fusion ignition and more generally create matter with unprecedented high energy density.Comment: 18 pages, 4 figure

    Leibniz 2-algebras and twisted Courant algebroids

    Full text link
    In this paper, we give the categorification of Leibniz algebras, which is equivalent to 2-term sh Leibniz algebras. They reveal the algebraic structure of omni-Lie 2-algebras introduced in \cite{omniLie2} as well as twisted Courant algebroids by closed 4-forms introduced in \cite{4form}. We also prove that Dirac structures of twisted Courant algebroids give rise to 2-term L∞L_\infty-algebras and geometric structures behind them are exactly HH-twisted Lie algebroids introduced in \cite{Grutzmann}.Comment: 22 pages, to appear in Comm. Algebr
    • …
    corecore