13,453 research outputs found
Efficient two-step entanglement concentration for arbitrary W states
We present two two-step practical entanglement concentration protocols (ECPs)
for concentrating an arbitrary three-particle less-entangled W state into a
maximally entangled W state assisted with single photons. The first protocol
uses the linear optics and the second protocol adopts the cross-Kerr
nonlinearity to perform the protocol. In the first protocol, based on the
post-selection principle, three parties say Alice, Bob and Charlie in different
distant locations can obtain the maximally entangled W state from the arbitrary
less-entangled W state with a certain success probability. In the second
protocol, it dose not require the parties to posses the sophisticated
single-photon detectors and the concentrated photon pair can be retained after
performing this protocol successfully. Moreover, the second protocol can be
repeated to get a higher success probability. Both protocols may be useful in
practical quantum information applications.Comment: 10 pages, 4 figure
Experiment of static and dynamic characteristics of spiral grooved seals
The leakages and the dynamic characteristics of six types of spiral grooved seals are experimentally investigated. The effect of the helix angle of the seal is investigated mainly under the condition of the same nominal clearances, land and groove lengths, and groove depths. The dynamic characteristics are measured for various parameters such as preswirl velocity, pressure difference between inlet and outlet of the seal, whirling amplitude, whirling speed, and rotating speed of the rotor. The results are also compared with leakage increases with the increase of the helix angle, but as the rotating speed increases, the leakages of the larger helix angle seals quickly drop. The leakage of the smooth-stator (SS)/smooth-grooved rotor (SGR) seal drops faster than that of the spiral-grooved stator (SGS)/smooth-rotor (SR) seal. It is found that a circumferential flow can be produced by the flow along the helix angle direction, and this circumferential flow acts as a negative swirl. For the present helix angle range, there is an optimum helix angle with which the seal has a comparatively positive effect on the rotor stability. Compared with the SGS/SR seals, the SS/SGR seal has a worse effect on the rotor stability
Optimal nonlocal multipartite entanglement concentration based on projection measurements
We propose an optimal nonlocal entanglement concentration protocol (ECP) for
multi-photon systems in a partially entangled pure state, resorting to the
projection measurement on an additional photon. One party in quantum
communication first performs a parity-check measurement on her photon in an
N-photon system and an additional photon, and then she projects the additional
photon into an orthogonal Hilbert space for dividing the original -photon
systems into two groups. In the first group, the N parties will obtain a subset
of -photon systems in a maximally entangled state. In the second group, they
will obtain some less-entangled N-photon systems which are the resource for the
entanglement concentration in the next round. By iterating the entanglement
concentration process several times, the present ECP has the maximal success
probability which is just equivalent to the entanglement of the partially
entangled state. That is, this ECP is an optimal one.Comment: 5 pages, 4 figure
Efficient multipartite entanglement purification with the entanglement link from a subspace
We present an efficient multipartite entanglement purification protocol
(MEPP) for N-photon systems in a Greenberger-Horne-Zeilinger state with
parity-check detectors. It contains two parts. One is the conventional MEPP
with which the parties can obtain a high-fidelity N-photon ensemble directly,
similar to the MEPP with controlled-not gates. The other is our recycling MEPP
in which the entanglement link is used to produce some -photon entangled
systems from entangled N'-photon subsystems (2 \leq N'<N) coming from the
instances which are just discarded in all existing conventional MEPPs. The
entangled N'-photon subsystems are obtained efficiently by measuring the
photons with potential bit-flip errors. With these two parts, the present MEPP
has a higher efficiency than all other conventional MEPPs.Comment: 17 pages, 9 figures, 2 tables. We correct the error in the address of
the author in the published version (Phys. Rev. A 84, 052312 (2011)
Absence of correlation between built-in electric dipole moment and quantum Stark effect in InAs/GaAs self-assembled quantum dots
We report significant deviations from the usual quadratic dependence of the
ground state interband transition energy on applied electric fields in
InAs/GaAs self-assembled quantum dots. In particular, we show that conventional
second-order perturbation theory fails to correctly describe the Stark shift
for electric field below kV/cm in high dots. Eight-band calculations demonstrate this effect is predominantly due to
the three-dimensional strain field distribution which for various dot shapes
and stoichiometric compositions drastically affects the hole ground state. Our
conclusions are supported by two independent experiments.Comment: 4 pages, 4 figure
Recommended from our members
Study on thermal conductivity of gas phase in nano-porous aerogel
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Nano-porous aerogel has an ultra low thermal conductivity and is usually used as the super
insulator. To evaluate the insulation performance of the aerogel, we focus on studying the thermal
conductivity of gas phase in the aerogel. We present a modified model to take into account the effect of nonuniform
pore-size distribution on the gaseous thermal conductivity, and the present model predicts more
agreement results with available data than the existing models. The gaseous thermal conductivity of the
aerogel at high temperature gradient condition is also numerically studied. We also study the effect of the
thermal transpiration flow on the gaseous thermal conductivity, and the results shows that the thermal
transpiration flow effect leads to a reduction of the gaseous thermal conductivity
Optical generation of hybrid entangled state via entangling single-photon-added coherent state
We propose a feasible scheme to realize the optical entanglement of
single-photon-added coherent state (SPACS) and show that, besides the Sanders
entangled coherent state, the entangled SPACS also leads to new forms of hybrid
entanglement of quantum Fock state and classical coherent state. We probe the
essential difference of two types of hybrid entangled state (HES). This HES
provides a novel link between the discrete- and the continuous-variable
entanglement in a natural way.Comment: 6 pages, 2 figure
Optimal Eavesdropping in Quantum Cryptography. II. Quantum Circuit
It is shown that the optimum strategy of the eavesdropper, as described in
the preceding paper, can be expressed in terms of a quantum circuit in a way
which makes it obvious why certain parameters take on particular values, and
why obtaining information in one basis gives rise to noise in the conjugate
basis.Comment: 7 pages, 1 figure, Latex, the second part of quant-ph/970103
Unequal Intra-layer Coupling in a Bilayer Driven Lattice Gas
The system under study is a twin-layered square lattice gas at half-filling,
being driven to non-equilibrium steady states by a large, finite `electric'
field. By making intra-layer couplings unequal we were able to extend the phase
diagram obtained by Hill, Zia and Schmittmann (1996) and found that the
tri-critical point, which separates the phase regions of the stripped (S) phase
(stable at positive interlayer interactions J_3), the filled-empty (FE) phase
(stable at negative J_3) and disorder (D), is shifted even further into the
negative J_3 region as the coupling traverse to the driving field increases.
Many transient phases to the S phase at the S-FE boundary were found to be
long-lived. We also attempted to test whether the universality class of D-FE
transitions under a drive is still Ising. Simulation results suggest a value of
1.75 for the exponent gamma but a value close to 2.0 for the ratio gamma/nu. We
speculate that the D-FE second order transition is different from Ising near
criticality, where observed first-order-like transitions between FE and its
"local minimum" cousin occur during each simulation run.Comment: 29 pages, 19 figure
- …