47,006 research outputs found

    Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation

    Full text link
    For human pose estimation in monocular images, joint occlusions and overlapping upon human bodies often result in deviated pose predictions. Under these circumstances, biologically implausible pose predictions may be produced. In contrast, human vision is able to predict poses by exploiting geometric constraints of joint inter-connectivity. To address the problem by incorporating priors about the structure of human bodies, we propose a novel structure-aware convolutional network to implicitly take such priors into account during training of the deep network. Explicit learning of such constraints is typically challenging. Instead, we design discriminators to distinguish the real poses from the fake ones (such as biologically implausible ones). If the pose generator (G) generates results that the discriminator fails to distinguish from real ones, the network successfully learns the priors.Comment: Fixed typos. 14 pages. Demonstration videos are http://v.qq.com/x/page/c039862eira.html, http://v.qq.com/x/page/f0398zcvkl5.html, http://v.qq.com/x/page/w0398ei9m1r.htm

    Self-Learning Monte Carlo Method in Fermion Systems

    Get PDF
    We develop the self-learning Monte Carlo (SLMC) method, a general-purpose numerical method recently introduced to simulate many-body systems, for studying interacting fermion systems. Our method uses a highly-efficient update algorithm, which we design and dub "cumulative update", to generate new candidate configurations in the Markov chain based on a self-learned bosonic effective model. From general analysis and numerical study of the double exchange model as an example, we find the SLMC with cumulative update drastically reduces the computational cost of the simulation, while remaining statistically exact. Remarkably, its computational complexity is far less than the conventional algorithm with local updates
    • …
    corecore