47,414 research outputs found

    Experimental and analytical studies of a true airspeed sensor

    Get PDF
    A true airspeed sensor based on the precession of a vortex whistle for sensing airspeeds up to 321.9 km/hr (200 mph). In an attempt to model the complicated fluid mechanics of the vortex precession, three dimensional, inviscid, unsteady, incompressible fluid flow was studied by using the hydrodynamical linearized stability theory. The temporal stability approach was used to derive the relationship between the true airspeed and frequency response. The results show that the frequency response is linearly proportional to the airspeed. A computer program was developed to obtain the numerical solution. Computational results for various parameters were obtained. The designed sensor basically consisted of a vortex tube, a swirler, and a transducer system. A microphone converted the audible tone to an electronic frequency signal. Measurements for both the closed conduit tests and wind tunnel tests were recorded. For a specific flow rate or airspeed, larger exit swirler angles produced higher frequencies. For a smaller cross sectional area in the precessional flow region, the frequency was higher. It was observed that as the airspeed was increased the Strouhal number remained constant

    Distributed H-infinity filtering for polynomial nonlinear stochastic systems in sensor networks

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the distributed H1 filtering problem is addressed for a class of polynomial nonlinear stochastic systems in sensor networks. For a Lyapunov function candidate whose entries are polynomials, we calculate its first- and second-order derivatives in order to facilitate the use of Itos differential role. Then, a sufficient condition for the existence of a feasible solution to the addressed distributed H1 filtering problem is derived in terms of parameter-dependent linear matrix inequalities (PDLMIs). For computational convenience, these PDLMIs are further converted into a set of sums of squares (SOSs) that can be solved effectively by using the semidefinite programming technique. Finally, a numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed design approach.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National 973 Program of China under Grant 2009CB320600, the National Natural Science Foundation of China under Grant 60974030 and the Alexander von Humboldt Foundation of Germany
    corecore