26 research outputs found

    Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Full text link
    Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG) both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully

    State-of-the-art luminescent materials based on wood veneer with superior strength, transparency, and water resistance

    No full text
    | openaire: EC/H2020/788489/EU//BioELCell Funding Information: The authors acknowledge funding support from the Guangdong Province Science Foundation (2017GC010429), the Guangdong Basic and Applied Basic Research Foundation (2022A1515010565), the Canada Excellence Research Chair Program (CERC-2018-00006), Canada Foundation for Innovation (Project number 38623) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 788489, “BioElCell”). Dr. Xiaotong Fu (Jiangnan University) is thanked for WAXS data processing and Ayako Takagi (UBC) for designing the model house.Current energy and luminescent materials utilize polymers to encapsulate fluorescent carbon nanodots and dyes but they usually lack stability and biodegradability. Here, we introduce an alternative wood nanotechnology to produce luminescent films (veneer) with UV resistance and tailorable surface energy. First, fluorescent and transparent wood (FTW) is shown as a support of aggregation-induced fluorescent emission (AIE) by in-situ Hantzsch reaction of acetoacetate delignified wood (AA-DW). Highly aligned cellulose nanofibers present in AA-DW facilitate FTW densification, ensuing exceptional mechanical performance (tensile strength and Young's modulus of up to 422 MPa and 45 GPa, respectively). Simultaneously, the conjugated structures display high transparency (83 %), haze (80 %) and optical anisotropy. The new luminescent system is demonstrated to be biodegradable and effective in optical (fluorescent) windows as well as encrypted films.Peer reviewe

    Parameter Estimation and Uncertainty Analysis: A Comparison between Continuous and Event-Based Modeling of Streamflow Based on the Hydrological Simulation Program–Fortran (HSPF) Model

    No full text
    Hydrologic modeling is usually applied to two scenarios: continuous and event-based modeling, between which hydrologists often neglect the significant differences in model application. In this study, a comparison-based procedure concerning parameter estimation and uncertainty analysis is presented based on the Hydrological Simulation Program–Fortran (HSPF) model. Calibrated parameters related to base flow and moisture distribution showed marked differences between the continuous and event-based modeling. Results of the regionalized sensitivity analysis identified event-dependent parameters and showed that gravity drainage and storage outflow were the primary runoff generation processes for both scenarios. The overall performance of the event-based simulation was better than that of the daily simulation for streamflow based on the generalized likelihood uncertainty estimation (GLUE). The GLUE analysis also indicated that the performance of the continuous model was limited by several extreme events and low flows. In the event-based scenario, the HSPF model performances decreased as the precipitation became intense in the event-based modeling. The structure error of the HSFP model was recognized at the initial phase of the rainfall-event period. This study presents a valuable opportunity to understand dominant controls in different hydrologic scenario and guide the application of the HSPF model

    Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries

    No full text
    The cathode, a crucial constituent part of Li-ion batteries, determines the output voltage and integral energy density of batteries to a great extent. Among them, Ni-rich LiNixCoyMnzO2 (x + y + z = 1, x ≥ 0.6) layered transition metal oxides possess a higher capacity and lower cost as compared to LiCoO2, which have stimulated widespread interests. However, the wide application of Ni-rich cathodes is seriously hampered by their poor diffusion dynamics and severe voltage drops. To moderate these problems, a nanobrick Ni-rich layered LiNi0.6Co0.2Mn0.2O2 cathode with a preferred orientation (110) facet was designed and successfully synthesized via a modified co-precipitation route. The galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) analysis of LiNi0.6Co0.2Mn0.2O2 reveal its superior kinetic performance endowing outstanding rate performance and long-term cycle stability, especially the voltage drop being as small as 67.7 mV at a current density of 0.5 C for 200 cycles. Due to its unique architecture, dramatically shortened ion/electron diffusion distance, and more unimpeded Li-ion transmission pathways, the current nanostructured LiNi0.6Co0.2Mn0.2O2 cathode enhances the Li-ion diffusion dynamics and suppresses the voltage drop, thus resulting in superior electrochemical performance
    corecore