73,310 research outputs found
Prostate Biopsy Assistance System with Gland Deformation Estimation for Enhanced Precision
Computer-assisted prostate biopsies became a very active research area during
the last years. Prostate tracking makes it possi- ble to overcome several
drawbacks of the current standard transrectal ultrasound (TRUS) biopsy
procedure, namely the insufficient targeting accuracy which may lead to a
biopsy distribution of poor quality, the very approximate knowledge about the
actual location of the sampled tissues which makes it difficult to implement
focal therapy strategies based on biopsy results, and finally the difficulty to
precisely reach non-ultrasound (US) targets stemming from different modalities,
statistical atlases or previous biopsy series. The prostate tracking systems
presented so far are limited to rigid transformation tracking. However, the
gland can get considerably deformed during the intervention because of US probe
pres- sure and patient movements. We propose to use 3D US combined with
image-based elastic registration to estimate these deformations. A fast elastic
registration algorithm that copes with the frequently occurring US shadows is
presented. A patient cohort study was performed, which yielded a statistically
significant in-vivo accuracy of 0.83+-0.54mm.Comment: This version of the paper integrates a correction concerning the
local similarity measure w.r.t. the proceedings (this typing error could not
be corrected before editing the proceedings
Lowest eigenvalue of the nuclear shell model Hamiltonian
In this paper we investigate regular patterns of matrix elements of the
nuclear shell model Hamiltonian , by sorting the diagonal matrix elements
from the smaller to larger values. By using simple plots of non-zero matrix
elements and lowest eigenvalues of artificially constructed "sub-matrices"
of , we propose a new and simple formula which predicts the lowest
eigenvalue with remarkable precisions.Comment: six pages, four figures, Physical Review C, in pres
Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements
The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator
- …