26,101 research outputs found
Integrate the GM(1,1) and Verhulst models to predict software stage effort
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Software effort prediction clearly plays a crucial role in software project management. In keeping with more dynamic approaches to software development, it is not sufficient to only predict the whole-project effort at an early stage. Rather, the project manager must also dynamically predict the effort of different stages or activities during the software development process. This can assist the project manager to reestimate effort and adjust the project plan, thus avoiding effort or schedule overruns. This paper presents a method for software physical time stage-effort prediction based on grey models GM(1,1) and Verhulst. This method establishes models dynamically according to particular types of stage-effort sequences, and can adapt to particular development methodologies automatically by using a novel grey feedback mechanism. We evaluate the proposed method with a large-scale real-world software engineering dataset, and compare it with the linear regression method and the Kalman filter method, revealing that accuracy has been improved by at least 28% and 50%, respectively. The results indicate that the method can be effective and has considerable potential. We believe that stage predictions could be a useful complement to whole-project effort prediction methods.National Natural Science Foundation of
China and the Hi-Tech Research
and Development Program of Chin
The Dense Plasma Torus Around the Nucleus of an Active Galaxy NGC 1052
A subparsec-scale dense plasma torus around an active galactic nucleus (AGN)
is unveiled. We report on very-long-baseline interferometry (VLBI) observations
at 2.3, 8.4, and 15.4 GHz towards the active galaxy NGC 1052. The convex
spectra of the double-sided jets and the nucleus imply that synchrotron
emission is obscured through free--free absorption (FFA) by the foreground cold
dense plasma. A trichromatic image was produced to illustrate the distribution
of the FFA opacity. We found a central condensation of the plasma which covers
about 0.1 pc and 0.7 pc of the approaching and receding jets, respectively. A
simple explanation for the asymmetric distribution is the existence of a thick
plasma torus perpendicular to the jets. We also found an ambient FFA absorber,
whose density profile can be ascribed to a spherical distribution of the
isothermal King model. The coexistence of torus-like and spherical
distributions of the plasma suggests a transition from radial accretion to
rotational accretion around the nucleus.Comment: 10 pages, to appear in Publ. Astron. Soc. Japan, vol.53, No.2 (2001
Spin and orbital valence bond solids in a one-dimensional spin-orbital system: Schwinger boson mean field theory
A generalized one-dimensional spin-orbital model is
studied by Schwinger boson mean-field theory (SBMFT). We explore mainly the
dimer phases and clarify how to capture properly the low temperature properties
of such a system by SBMFT. The phase diagrams are exemplified. The three dimer
phases, orbital valence bond solid (OVB) state, spin valence bond solid (SVB)
state and spin-orbital valence bond solid (SOVB) state, are found to be favored
in respectively proper parameter regions, and they can be characterized by the
static spin and pseudospin susceptibilities calculated in SBMFT scheme. The
result reveals that the spin-orbit coupling of type serves
as both the spin-Peierls and orbital-Peierles mechanisms that responsible for
the spin-singlet and orbital-singlet formations respectively.Comment: 6 pages, 3 figure
A Measurement of Proper Motions of SiO Maser Sources in the Galactic Center with the VLBA
We report on the high-precision astrometric observations of maser sources
around the Galactic Center in the SiO J=1--0 v=1 and 2 lines with the VLBA
during 2001 -- 2004. With phase-referencing interferometry referred to the
radio continuum source Sgr A*, accurate positions of masers were obtained for
three detected objects: IRS 10 EE (7 epochs), IRS 15NE (2 epochs), and SiO 6
(only 1 epoch). Because circumstellar masers of these objects were resolved
into several components, proper motions for the maser sources were derived with
several different methods. Combining our VLBA results with those of the
previous VLA observations, we obtained the IRS 10EE proper motion of 76+-3 km
s^{-1} (at 8 kpc) to the south relative to Sgr A*. Almost null proper motion of
this star in the east--west direction results in a net transverse motion of the
infrared reference frame of about 30+-9 km s^{-1} to the west relative to Sgr
A*. The proper-motion data also suggests that IRS 10EE is an astrometric binary
with an unseen massive companion.Comment: High-res. figures are available at
ftp://ftp.nro.nao.ac.jp/nroreport/no656.pdf.gz . PASJ 60, No. 1 (2008) in
pres
Unified theory of phase separation and charge ordering in doped manganite perovskites
A unified theory is developed to explain various types of electronic
collective behaviors in doped manganites RXMnO (R = La, Pr,Nd
etc. and X = Ca, Sr, Ba etc.). Starting from a realistic electronic model, we
derive an effective Hamiltonianis by ultilizing the projection perturbation
techniques and develop a spin-charge-orbital coherent state theory, in which
the Jahn-Teller effect and the orbital degeneracy of e electrons in Mn ions
are taken into account. Physically, the experimentally observed charge ordering
state and electronic phase separation are two macroscopic quantum phenomena
with opposite physical mechanisms, and their physical origins are elucidated in
this theory. Interplay of the Jahn-Teller effect, the lattice distortion as
well as the double exchange mechanism leads to different magnetic structures
and to different charge ordering patterns and phase separation.Comment: 10 ReVTEX pages with 4 figures attache
Excitation Energy as a Basic Variable to Control Nuclear Disassembly
Thermodynamical features of Xe system is investigated as functions of
temperature and freeze-out density in the frame of lattice gas model. The
calculation shows different temperature dependence of physical observables at
different freeze-out density. In this case, the critical temperature when the
phase transition takes place depends on the freeze-out density. However, a
unique critical excitation energy reveals regardless of freeze-out density when
the excitation energy is used as a variable insteading of temperature.
Moreover, the different behavior of other physical observables with temperature
due to different vanishes when excitation energy replaces temperature.
It indicates that the excitation energy can be seen as a more basic quantity to
control nuclear disassembly.Comment: 3 pages, 2 figures, Revte
Possible dibaryons in the quark cluster model
In the framework of RGM, the binding energy of one channel
() and are studied in the
chiral SU(3) quark cluster model. It is shown that the binding energies of the
systems are a few tens of MeV. The behavior of the chiral field is also
investigated by comparing the results with those in the SU(2) and the extended
SU(2) chiral quark models. It is found that the symmetry property of the
system makes the contribution of the relative kinetic energy
operator between two clusters attractive. This is very beneficial for forming
the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very
important role on binding. The S-wave phase shifts and the corresponding
scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure
- …