56,048 research outputs found
An experimental study of imperfectly conducting dipoles
Input admittances of imperfectly conducting dipole antennas measured in ultrahigh frequency rang
A Comparison Between the Variational Solution and the Experimental Data
Current distribution on dipole antenna with nonreflecting resistive loading, expressed using variation metho
The Cylindrical Antenna with Tapered Resistive Loading Scientific Report No. 5
Current, input impedance, and far field pattern of cylindrical antenna with tapered resistive loadin
Absence of magnetic long range order in YCrSbO: bond-disorder induced magnetic frustration in a ferromagnetic pyrochlore
The consequences of nonmagnetic-ion dilution for the pyrochlore family
Y()O ( = magnetic ion, = nonmagnetic
ion) have been investigated. As a first step, we experimentally examine the
magnetic properties of YCrSbO ( = 0.5), in which the magnetic
sites (Cr) are percolative. Although the effective Cr-Cr spin exchange
is ferromagnetic, as evidenced by a positive Curie-Weiss temperature,
= 20.1(6) K, our high-resolution neutron powder
diffraction measurements detect no sign of magnetic long range order down to 2
K. In order to understand our observations, we performed numerical simulations
to study the bond-disorder introduced by the ionic size mismatch between
and . Based on these simulations, bond-disorder ( 0.23)
percolates well ahead of site-disorder ( 0.61). This model
successfully reproduces the critical region (0.2 < < 0.25) for the N\'eel
to spin glass phase transition in Zn(CrGa)O, where
the Cr/Ga-sublattice forms the same corner-sharing tetrahedral network as the
-sublattice in Y()O, and the rapid drop in
magnetically ordered moment in the N\'eel phase [Lee , Phys. Rev. B
77, 014405 (2008)]. Our study stresses the nonnegligible role of bond-disorder
on magnetic frustration, even in ferromagnets
Anomalous high energy dispersion in photoemission spectra from insulating cuprates
Angle resolved photoelectron spectroscopic measurements have been performed
on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the
\Gamma to (pi,pi) cut show an additional dispersive feature that merges with
the known dispersion of the lowest binding energy feature, which follows the
usual strongly renormalized dispersion of ~0.35 eV. This higher energy part
reveals a dispersion that is very close to the unrenormalized band predicted by
band theory. A transfer of spectral weight from the low energy feature to the
high energy feature is observed as the \Gamma point is approached. By comparing
with theoretical calculations the high energy feature observed here
demonstrates that the incoherent portion of the spectral function has
significant structure in momentum space due to the presence of various energy
scales.Comment: 5 pages, 3 figure
A simple theory of dipole antennas
Simple and quantitatively accurate representation of current distribution in dipole antenna
NIMBUS-5 sounder data processing system. Part 2: Results
The Nimbus-5 spacecraft carries infrared and microwave radiometers for sensing the temperature distribution of the atmosphere. Methods developed for obtaining temperature profiles from the combined set of infrared and microwave radiation measurements are described. Algorithms used to determine (a) vertical temperature and water vapor profiles, (b) cloud height, fractional coverage, and liquid water content, (c) surface temperature, and (d) total outgoing longwave radiation flux are described. Various meteorological results obtained from the application of the Nimbus-5 sounding data processing system during 1973 and 1974 are presented
An experimental study of the dipole antenna with nonreflecting resistive loading
Current distribution, input admittance, and radiation field pattern of dipole antenna with nonreflecting resistive loadin
Dynamics of quantum-classical hybrid system: effect of matter-wave pressure
Radiation pressure affects the kinetics of a system exposed to the radiation
and it constitutes the basis of laser cooling. In this paper, we study {\it
matter-wave pressure} through examining the dynamics of a quantum-classical
hybrid system. The quantum and classical subsystem have no explicit coupling to
each other, but affect mutually via a changing boundary condition. Two systems,
i.e., an atom and a Bose-Einstein condensate(BEC), are considered as the
quantum subsystems, while an oscillating wall is taken as the classical
subsystem. We show that the classical subsystem would experience a force
proportional to from the quantum atom, whereas it acquires an
additional force proportional to from the BEC due to the atom-atom
interaction in the BEC. These forces can be understood as the {\it matter-wave
pressure}.Comment: 7 pages, 6 figue
- …