65,795 research outputs found
Bounded H∞ synchronization and state estimation for discrete time-varying stochastic complex for discrete time-varying stochastic complex networks over a finite horizon
Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, new synchronization and state estimation problems are considered for an array of coupled discrete time-varying stochastic complex networks over a finite horizon. A novel concept of bounded H∞ synchronization is proposed to handle the time-varying nature of the complex networks. Such a concept captures the transient behavior of the time-varying complex network over a finite horizon, where the degree of
bounded synchronization is quantified in terms of the H∞-norm. A general sector-like nonlinear function is employed to describe
the nonlinearities existing in the network. By utilizing a timevarying real-valued function and the Kronecker product, criteria
are established that ensure the bounded H∞ synchronization in terms of a set of recursive linear matrix inequalities (RLMIs),
where the RLMIs can be computed recursively by employing available MATLAB toolboxes. The bounded H∞ state estimation problem is then studied for the same complex network, where
the purpose is to design a state estimator to estimate the network states through available output measurements such that, over a finite horizon, the dynamics of the estimation error is guaranteed to be bounded with a given disturbance attenuation level. Again, an RLMI approach is developed for the state estimation problem. Finally, two simulation examples are exploited to show the
effectiveness of the results derived in this paper.This work was supported in part by the Engineering and Physical Sciences Research Council of U.K. under Grant GR/S27658/01, the National Natural Science Foundation of China under Grant 61028008 and Grant 60974030, the National 973 Program of China under Grant 2009CB320600, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany
Error-constrained filtering for a class of nonlinear time-varying delay systems with non-gaussian noises
Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the quadratic error-constrained filtering problem is formulated and investigated for discrete time-varying nonlinear systems with state delays and non-Gaussian noises. Both the Lipschitz-like and ellipsoid-bounded nonlinearities are considered. The non-Gaussian noises are assumed to be unknown, bounded, and confined to specified ellipsoidal sets. The aim of the addressed filtering problem is to develop a recursive algorithm based on the semi-definite programme method such that, for the admissible time-delays, nonlinear parameters and external bounded noise disturbances, the quadratic estimation error is not more than a certain optimized upper bound at every time step. The filter parameters are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the
U.K., the National Natural Science Foundation of China under Grant 61028008
and Grant 61074016, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany.
Recommended by Associate Editor E. Fabre
Sampled-data synchronization control of dynamical networks with stochastic sampling
Copyright @ 2012 IEEEThis technical note is concerned with the sampled-data synchronization control problem for a class of dynamical networks. The sampling period considered here is assumed to be time-varying that switches between two different values in a random way with given probability. The addressed synchronization control problem is first formulated as an exponentially mean-square stabilization problem for a new class of dynamical networks that involve both the multiple probabilistic interval delays (MPIDs) and the sector-bounded nonlinearities (SBNs). Then, a novel Lyapunov functional is constructed to obtain sufficient conditions under which the dynamical network is exponentially mean-square stable. Both Gronwall's inequality and Jenson integral inequality are utilized to substantially simplify the derivation of the main results. Subsequently, a set of sampled-data synchronization controllers is designed in terms of the solution to certain matrix inequalities that can be solved effectively by using available software. Finally, a numerical simulation example is employed to show the effectiveness of the proposed sampled-data synchronization control scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61028008, 60974030, 61134009 and 61104125, the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation
of Germany
Nuclear reactions induced by high-energy alpha particles
Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue
and dibaryons in SU(3) chiral quark model
The binding energy of the six quark system with strangeness s=-3 is
investigated under the chiral SU(3) constituent quark model in the framework of
. The calculations of the single channel with spin S=2 and the
single channel with spin S=3 are performed. The results show
that both systems could be dibaryons and the interaction induced by the chiral
field plays a very important role on forming bound states in the systems
considered.
The phase shifts and scattering lengths in corresponding channels are also
given.Comment: LaTex file with 5 figure
Probability-dependent gain-scheduled control for discrete stochastic delayed systems with randomly occurring nonlinearities
This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 John Wiley & Sons, Ltd.In this paper, the gain-scheduled control problem is addressed by using probability-dependent Lyapunov functions for a class of discrete-time stochastic delayed systems with randomly occurring sector nonlinearities. The sector nonlinearities are assumed to occur according to a time-varying Bernoulli distribution with measurable probability in real time. The multiplicative noises are given by means of a scalar Gaussian white noise sequence with known variances. The aim of the addressed gain-scheduled control problem is to design a controller with scheduled gains such that, for the admissible randomly occurring nonlinearities, time delays and external noise disturbances, the closed-loop system is exponentially mean-square stable. Note that the designed gain-scheduled controller is based on the measured time-varying probability and is therefore less conservative than the conventional controller with constant gains. It is shown that the time-varying controller gains can be derived in terms of the measurable probability by solving a convex optimization problem via the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the UK, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Natural Science Foundation of China under Grants 61028008, 61134009, 61074016, 61104125 and 60974030, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany
Does the 2d Higgs-Yukawa Model Have a Symmetric Phase at Small Yukawa Coupling Region?
We show that at arbitrary value of the scalar self coupling and small Yukawa
coupling the 2d Higgs-Yukawa model with Z(2) symmetry remains in the broken
phase and the model is asymptotically free: as the cut-off . This is in agreement with a recent conjecture based on numerical
simulation results.Comment: 6 pages, 1 postscript figure attached, BUHEP-93-
- …