23,853 research outputs found

    Spin and orbital valence bond solids in a one-dimensional spin-orbital system: Schwinger boson mean field theory

    Full text link
    A generalized one-dimensional SU(2)×SU(2)SU(2)\times SU(2) spin-orbital model is studied by Schwinger boson mean-field theory (SBMFT). We explore mainly the dimer phases and clarify how to capture properly the low temperature properties of such a system by SBMFT. The phase diagrams are exemplified. The three dimer phases, orbital valence bond solid (OVB) state, spin valence bond solid (SVB) state and spin-orbital valence bond solid (SOVB) state, are found to be favored in respectively proper parameter regions, and they can be characterized by the static spin and pseudospin susceptibilities calculated in SBMFT scheme. The result reveals that the spin-orbit coupling of SU(2)×SU(2)SU(2)\times SU(2) type serves as both the spin-Peierls and orbital-Peierles mechanisms that responsible for the spin-singlet and orbital-singlet formations respectively.Comment: 6 pages, 3 figure

    Anti-shielding Effect and Negative Temperature in Instantaneously Reversed Electric Fields and Left-Handed Media

    Full text link
    The connections between the anti-shielding effect, negative absolute temperature and superluminal light propagation in both the instantaneously reversed electric field and the left-handed media are considered in the present paper. The instantaneous inversion of the exterior electric field may cause the electric dipoles into the state of negative absolute temperature and therefore give rise to a negative effective mass term of electromagnetic field (i. e., the electromagnetic field propagating inside the negative-temperature medium will acquire an imaginary rest mass), which is said to result in the potential superluminality effect of light propagation in this anti-shielding dielectric. In left-handed media, such phenomena may also arise.Comment: 9 pages, Late

    Difficulties in probing density dependent symmetry potential with the HBT interferometry

    Full text link
    Based on the updated UrQMD transport model, the effect of the symmetry potential energy on the two-nucleon HBT correlation is investigated with the help of the coalescence program for constructing clusters, and the CRAB analyzing program of the two-particle HBT correlation. An obvious non-linear dependence of the neutron-proton (or neutron-neutron) HBT correlation function (Cnp,nnC_{np,nn}) at small relative momenta on the stiffness factor γ\gamma of the symmetry potential energy is found: when γ≲0.8\gamma \lesssim 0.8, the Cnp,nnC_{np,nn} increases rapidly with increasing γ\gamma, while it starts to saturate if γ≳0.8\gamma \gtrsim 0.8. It is also found that both the symmetry potential energy at low densities and the conditions of constructing clusters at the late stage of the whole process influence the two-nucleon HBT correlation with the same power.Comment: 11 pages, 4 figure

    Possible ΔΔ\Delta\Delta dibaryons in the quark cluster model

    Full text link
    In the framework of RGM, the binding energy of one channel ΔΔ(3,0)\Delta\Delta_{(3,0)}(d∗d^*) and ΔΔ(0,3)\Delta\Delta_{(0,3)} are studied in the chiral SU(3) quark cluster model. It is shown that the binding energies of the systems are a few tens of MeV. The behavior of the chiral field is also investigated by comparing the results with those in the SU(2) and the extended SU(2) chiral quark models. It is found that the symmetry property of the ΔΔ\Delta\Delta system makes the contribution of the relative kinetic energy operator between two clusters attractive. This is very beneficial for forming the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very important role on binding. The S-wave phase shifts and the corresponding scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure

    Displaced thinned coprime arrays with an additional sensor for DOA estimation

    Get PDF
    A new sparse array structure based on the recently proposed thinned coprime arrays is proposed to maximize the number of unique lags. The design process involves two stages: the first stage displaces one subarray from its original position for an increase in the number of lags; as the displacement results in the minimum interelement spacing equal to integer multiples of half-wavelength, an additional sensor at a distance of half-wavelength is then added in the displaced subarray to avoid spatial aliasing. The strategic location of the additional sensor results in a significant increase in the overall unique lags which can be utilized for direction-of-arrival estimation (DOA) using compressive sensing based methods. Furthermore, the new structure has excellent performance in the presence of mutual coupling as shown by simulation results

    Unified theory of phase separation and charge ordering in doped manganite perovskites

    Full text link
    A unified theory is developed to explain various types of electronic collective behaviors in doped manganites R1−x_{1-x}Xx_xMnO3_3 (R = La, Pr,Nd etc. and X = Ca, Sr, Ba etc.). Starting from a realistic electronic model, we derive an effective Hamiltonianis by ultilizing the projection perturbation techniques and develop a spin-charge-orbital coherent state theory, in which the Jahn-Teller effect and the orbital degeneracy of eg_g electrons in Mn ions are taken into account. Physically, the experimentally observed charge ordering state and electronic phase separation are two macroscopic quantum phenomena with opposite physical mechanisms, and their physical origins are elucidated in this theory. Interplay of the Jahn-Teller effect, the lattice distortion as well as the double exchange mechanism leads to different magnetic structures and to different charge ordering patterns and phase separation.Comment: 10 ReVTEX pages with 4 figures attache

    Formation of energy gap in higher dimensional spin-orbital liquids

    Get PDF
    A Schwinger boson mean field theory is developed for spin liquids in a symmetric spin-orbital model in higher dimensions. Spin, orbital and coupled spin-orbital operators are treated equally. We evaluate the dynamic correlation functions and collective excitations spectra. As the collective excitations have a finite energy gap, we conclude that the ground state is a spin-orbital liquid with a two-fold degeneracy, which breaks the discrete spin-orbital symmetry. Possible relevence of this spin liquid state to several realistic systems, such as CaV4_4V9_9 and Na2_2Sb2_2Ti2_2O, are discussed.Comment: 4 pages with 1 figur

    Self-induced charge currents in electromagnetic materials, photon effective rest mass and some related topics

    Full text link
    The contribution of self-induced charge currents of metamaterial media to photon effective rest mass is discussed in detail in the present paper. We concern ourselves with two kinds of photon effective rest mass, i.e., the frequency-dependent and frequency-independent effective rest mass. Based on these two definitions, we calculate the photon effective rest mass in the left-handed medium and the 2TDLM media, the latter of which is described by the so-called two time derivative Lorentz material (2TDLM) model. Additionally, we concentrate primarily on the torque, which is caused by the interaction between self-induced charge currents in dilute plasma (e.g., the secondary cosmic rays) and interstellar magnetic fields (ambient cosmic magnetic vector potentials), acting on the torsion balance of the rotating torsion balance experiment.Comment: 11 pages, Late
    • …
    corecore