225 research outputs found

    A Bayesian Approach for Selecting Relevant External Data (BASE): Application to a study of Long-Term Outcomes in a Hemophilia Gene Therapy Trial

    Full text link
    Gene therapies aim to address the root causes of diseases, particularly those stemming from rare genetic defects that can be life-threatening or severely debilitating. While there has been notable progress in the development of gene therapies in recent years, understanding their long-term effectiveness remains challenging due to a lack of data on long-term outcomes, especially during the early stages of their introduction to the market. To address the critical question of estimating long-term efficacy without waiting for the completion of lengthy clinical trials, we propose a novel Bayesian framework. This framework selects pertinent data from external sources, often early-phase clinical trials with more comprehensive longitudinal efficacy data that could lead to an improved inference of the long-term efficacy outcome. We apply this methodology to predict the long-term factor IX (FIX) levels of HEMGENIX (etranacogene dezaparvovec), the first FDA-approved gene therapy to treat adults with severe Hemophilia B, in a phase 3 study. Our application showcases the capability of the framework to estimate the 5-year FIX levels following HEMGENIX therapy, demonstrating sustained FIX levels induced by HEMGENIX infusion. Additionally, we provide theoretical insights into the methodology by establishing its posterior convergence properties

    Application of microstructured fiber sensor in the field of temperature detection

    Get PDF
    A fiber temperature sensor based on no core fiber-few mode fiber-no core fiber (NCF-FMF-NCF) is proposed. It consists of two segments of NCF and a segment of FMF, with the NCF fused at both ends of the FMF. Meanwhile, the lengths of the NCF and FMF were optimized by simulation simulations and experimental validation. The results show that the sensor has a high sensitivity to the external refractive index (RI) changes, and enables a wide range of ambient temperature measurement. A sensitivity of 0.09445nm/? was obtained in a temperature range of 25-70?. The sensor has the advantages of high stability, good linear fit and simple structure

    Estimating International Migration Flows for the Asia-Pacific Region: Application of a Generation-Distribution Model

    Get PDF
    This is a repository for our paper in Migration Studies. The paper estimates annual flows of international migration among 53 populations in the Asia-Pacific region and four macro world regions from 2000 to 2019 using a generation-distribution framework. This release contains: Simulated input data Code to produce the estimates Final estimated flows in the paper For questions with the code or request for all estimated flows with 1000 iterations, please email [email protected] or [email protected]

    Neural-Network-Driven Method for Optimal Path Planning via High-Accuracy Region Prediction

    Full text link
    Sampling-based path planning algorithms suffer from heavy reliance on uniform sampling, which accounts for unreliable and time-consuming performance, especially in complex environments. Recently, neural-network-driven methods predict regions as sampling domains to realize a non-uniform sampling and reduce calculation time. However, the accuracy of region prediction hinders further improvement. We propose a sampling-based algorithm, abbreviated to Region Prediction Neural Network RRT* (RPNN-RRT*), to rapidly obtain the optimal path based on a high-accuracy region prediction. First, we implement a region prediction neural network (RPNN), to predict accurate regions for the RPNN-RRT*. A full-layer channel-wise attention module is employed to enhance the feature fusion in the concatenation between the encoder and decoder. Moreover, a three-level hierarchy loss is designed to learn the pixel-wise, map-wise, and patch-wise features. A dataset, named Complex Environment Motion Planning, is established to test the performance in complex environments. Ablation studies and test results show that a high accuracy of 89.13% is achieved by the RPNN for region prediction, compared with other region prediction models. In addition, the RPNN-RRT* performs in different complex scenarios, demonstrating significant and reliable superiority in terms of the calculation time, sampling efficiency, and success rate for optimal path planning.Comment: 9 pages, 8 figure

    Precision education: A Bayesian nonparametric approach for handling item and examinee heterogeneity in assessment data

    Full text link
    We propose a novel nonparametric Bayesian IRT model in this paper by introducing the clustering effect at question level and further assume heterogeneity at examinee level under each question cluster, characterized by the mixture of Binomial distributions. The main contribution of this work is threefold: (1) We demonstrate that the model is identifiable. (2) The clustering effect can be captured asymptotically and the parameters of interest that measure the proficiency of examinees in solving certain questions can be estimated at a root n rate (up to a log term). (3) We present a tractable sampling algorithm to obtain valid posterior samples from our proposed model. We evaluate our model via a series of simulations as well as apply it to an English assessment data. This data analysis example nicely illustrates how our model can be used by test makers to distinguish different types of students and aid in the design of future tests

    Adaptively Placed Multi-Grid Scene Representation Networks for Large-Scale Data Visualization

    Full text link
    Scene representation networks (SRNs) have been recently proposed for compression and visualization of scientific data. However, state-of-the-art SRNs do not adapt the allocation of available network parameters to the complex features found in scientific data, leading to a loss in reconstruction quality. We address this shortcoming with an adaptively placed multi-grid SRN (APMGSRN) and propose a domain decomposition training and inference technique for accelerated parallel training on multi-GPU systems. We also release an open-source neural volume rendering application that allows plug-and-play rendering with any PyTorch-based SRN. Our proposed APMGSRN architecture uses multiple spatially adaptive feature grids that learn where to be placed within the domain to dynamically allocate more neural network resources where error is high in the volume, improving state-of-the-art reconstruction accuracy of SRNs for scientific data without requiring expensive octree refining, pruning, and traversal like previous adaptive models. In our domain decomposition approach for representing large-scale data, we train an set of APMGSRNs in parallel on separate bricks of the volume to reduce training time while avoiding overhead necessary for an out-of-core solution for volumes too large to fit in GPU memory. After training, the lightweight SRNs are used for realtime neural volume rendering in our open-source renderer, where arbitrary view angles and transfer functions can be explored. A copy of this paper, all code, all models used in our experiments, and all supplemental materials and videos are available at https://github.com/skywolf829/APMGSRN.Comment: Accepted to IEEE VIS 202

    Finetuning Text-to-Image Diffusion Models for Fairness

    Full text link
    The rapid adoption of text-to-image diffusion models in society underscores an urgent need to address their biases. Without interventions, these biases could propagate a distorted worldview and limit opportunities for minority groups. In this work, we frame fairness as a distributional alignment problem. Our solution consists of two main technical contributions: (1) a distributional alignment loss that steers specific characteristics of the generated images towards a user-defined target distribution, and (2) biased direct finetuning of diffusion model's sampling process, which leverages a biased gradient to more effectively optimize losses defined on the generated images. Empirically, our method markedly reduces gender, racial, and their intersectional biases for occupational prompts. Gender bias is significantly reduced even when finetuning just five soft tokens. Crucially, our method supports diverse perspectives of fairness beyond absolute equality, which is demonstrated by controlling age to a 75%75\% young and 25%25\% old distribution while simultaneously debiasing gender and race. Finally, our method is scalable: it can debias multiple concepts at once by simply including these prompts in the finetuning data. We hope our work facilitates the social alignment of T2I generative AI. We will share code and various debiased diffusion model adaptors.Comment: preprint under revie
    corecore