49,943 research outputs found

    Resolvent Estimates in L^p for the Stokes Operator in Lipschitz Domains

    Full text link
    We establish the LpL^p resolvent estimates for the Stokes operator in Lipschitz domains in RdR^d, d≥3d\ge 3 for ∣1p−1/2∣<12d+ϵ|\frac{1}{p}-1/2|< \frac{1}{2d} +\epsilon. The result, in particular, implies that the Stokes operator in a three-dimensional Lipschitz domain generates a bounded analytic semigroup in LpL^p for (3/2)-\varep < p< 3+\epsilon. This gives an affirmative answer to a conjecture of M. Taylor.Comment: 28 page. Minor revision was made regarding the definition of the Stokes operator in Lipschitz domain

    Optical control of magnetization of micron-size domains in antiferromagnetic NiO single crystals

    Full text link
    We propose Raman-induced collinear difference-frequency generation (DFG) as a method to manipulate dynamical magnetization. When a fundamental beam propagates along a threefold rotational axis, this coherent second-order optical process is permitted by angular momentum conservation through the rotational analogue of the Umklapp process. As a demonstration, we experimentally obtained polarization properties of collinear magnetic DFG along a [111] axis of a single crystal of antiferromagnetic NiO with micro multidomain structure, which excellently agreed with the theoretical prediction.Comment: 11 pages, 3 figures, submitted to Physical Review Letter

    Possible ΔΔ\Delta\Delta dibaryons in the quark cluster model

    Full text link
    In the framework of RGM, the binding energy of one channel ΔΔ(3,0)\Delta\Delta_{(3,0)}(d∗d^*) and ΔΔ(0,3)\Delta\Delta_{(0,3)} are studied in the chiral SU(3) quark cluster model. It is shown that the binding energies of the systems are a few tens of MeV. The behavior of the chiral field is also investigated by comparing the results with those in the SU(2) and the extended SU(2) chiral quark models. It is found that the symmetry property of the ΔΔ\Delta\Delta system makes the contribution of the relative kinetic energy operator between two clusters attractive. This is very beneficial for forming the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very important role on binding. The S-wave phase shifts and the corresponding scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure

    A simple theory of dipole antennas

    Get PDF
    Simple and quantitatively accurate representation of current distribution in dipole antenna

    Impact of surface roughness on diffusion of confined fluids

    Full text link
    Using event-driven molecular dynamics simulations, we quantify how the self diffusivity of confined hard-sphere fluids depends on the nature of the confining boundaries. We explore systems with featureless confining boundaries that treat particle-boundary collisions in different ways and also various types of physically (i.e., geometrically) rough boundaries. We show that, for moderately dense fluids, the ratio of the self diffusivity of a rough wall system to that of an appropriate smooth-wall reference system is a linear function of the reciprocal wall separation, with the slope depending on the nature of the roughness. We also discuss some simple practical ways to use this information to predict confined hard-sphere fluid behavior in different rough-wall systems

    Wigner-Moyal description of free variable mass Klein-Gordon fields

    Full text link
    A system of coupled kinetic transport equations for the Wigner distributions of a free variable mass Klein-Gordon field is derived. This set of equations is formally equivalent to the full wave equation for electromagnetic waves in nonlinear dispersive media, thus allowing for the description of broadband radiation-matter interactions and the associated instabilities. The standard results for the classical wave action are recovered in the short wavelength limit of the generalized Wigner-Moyal formalism for the wave equation.Comment: 9 pages, accepted for publication in Journal of Mathematical Physic

    Composition and concentration anomalies for structure and dynamics of Gaussian-core mixtures

    Full text link
    We report molecular dynamics simulation results for two-component fluid mixtures of Gaussian-core particles, focusing on how tracer diffusivities and static pair correlations depend on temperature, particle concentration, and composition. At low particle concentrations, these systems behave like simple atomic mixtures. However, for intermediate concentrations, the single-particle dynamics of the two species largely decouple, giving rise to the following anomalous trends. Increasing either the concentration of the fluid (at fixed composition) or the mole fraction of the larger particles (at fixed particle concentration) enhances the tracer diffusivity of the larger particles, but decreases that of the smaller particles. In fact, at sufficiently high particle concentrations, the larger particles exhibit higher mobility than the smaller particles. Each of these dynamic behaviors is accompanied by a corresponding structural trend that characterizes how either concentration or composition affects the strength of the static pair correlations. Specifically, the dynamic trends observed here are consistent with a single empirical scaling law that relates an appropriately normalized tracer diffusivity to its pair-correlation contribution to the excess entropy.Comment: 5 pages, 4 figure

    Domain wall propagation through spin wave emission

    Full text link
    We theoretically study field-induced domain wall (DW) motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. DWs can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of damping, the mode appears before the Walker breakdown field for strong out-of-plane magnetic anisotropy, and the usual Walker rigid-body propagation mode becomes unstable when the field is between the maximal-DW-speed field and Walker breakdown field.Comment: 4 pages, 4 figure
    • …
    corecore