121 research outputs found

    Tag-based annotation creates better avatars

    Full text link
    Avatar creation from human images allows users to customize their digital figures in different styles. Existing rendering systems like Bitmoji, MetaHuman, and Google Cartoonset provide expressive rendering systems that serve as excellent design tools for users. However, twenty-plus parameters, some including hundreds of options, must be tuned to achieve ideal results. Thus it is challenging for users to create the perfect avatar. A machine learning model could be trained to predict avatars from images, however the annotators who label pairwise training data have the same difficulty as users, causing high label noise. In addition, each new rendering system or version update requires thousands of new training pairs. In this paper, we propose a Tag-based annotation method for avatar creation. Compared to direct annotation of labels, the proposed method: produces higher annotator agreements, causes machine learning to generates more consistent predictions, and only requires a marginal cost to add new rendering systems.Comment: 15 pages, 7 figures, 4 table

    Energy-efficient Connected Cruise Control with Lean Penetration of Connected Vehicles

    Full text link
    This paper focuses on energy-efficient longitudinal controller design for a connected automated truck that travels in mixed traffic consisting of connected and non-connected vehicles. The truck has access to information about connected vehicles beyond line of sight using vehicle-to-vehicle (V2V) communication. A novel connected cruise control design is proposed which incorporates additional delays into the control law when responding to distant connected vehicles to account for the finite propagation of traffic waves. The speeds of non-connected vehicles are modeled as stochastic processes. A fundamental theorem is proven which links the spectral properties of the motion signals to the average energy consumption. This enables us to tune controller parameters and maximize energy efficiency. Simulations with synthetic data and real traffic data are used to demonstrate the energy efficiency of the control design. It is demonstrated that even with lean penetration of connected vehicles, our controller can bring significant energy savings.Comment: This is submitted to IEEE Transactions on Intelligent Transportation System

    Energy-efficient Reactive and Predictive Connected Cruise Control

    Full text link
    In this paper, we propose a framework for the longitudinal control of connected and automated vehicles traveling in mixed traffic consisting of connected and non-connected human-driven vehicles. Reactive and predictive controllers are proposed. Reactive controllers are given by explicit feedback control laws. In predictive controllers, the control input is optimized in a receding-horizon fashion, which depends on the predictions of motions of preceding vehicles. Beyond-line-of-sight information is obtained via vehicle-to-vehicle (V2V) communication, and is utilized in the proposed reactive and predictive controllers. Simulations utilizing real traffic data are used to show that connectivity can bring significant energy savings.Comment: 18 pages, 12 figures, submitted to Transportation Research Part C: Emerging Technologie

    An All-Silicon Passive Optical Diode

    Get PDF
    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing

    Top-gated graphene field-effect-transistors formed by decomposition of SiC

    Get PDF
    Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally-decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement of carbon atoms with the correct lattice vectors, observed by high-resolution scanning tunneling microscopy, confirms the formation of multiple graphene layers on top of the SiC substrates. The observation of n-type and p-type transition further verifies Dirac Fermions unique transport properties in graphene layers. The measured electron and hole mobility on these fabricated graphene FETs are as high as 5400 cm2/Vs and 4400 cm2/Vs respectively, which are much larger than the corresponding values from conventional SiC or silicon

    Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and LiPON via Cryogenic Electron Microscopy

    Full text link
    The solid electrolyte interphase (SEI) is regarded as the most complex but the least understood constituent in secondary batteries using liquid and solid electrolytes. The nanostructures of SEIs were recently reported to be equally important to the chemistry of SEIs for stabilizing Li metal in liquid electrolyte. However, the dearth of such knowledge in all-solid-state battery (ASSB) has hindered a complete understanding of how certain solid-state electrolytes, such as LiPON, manifest exemplary stability against Li metal. Characterizing such solid-solid interfaces is difficult due to the buried, highly reactive, and beam-sensitive nature of the constituents within. By employing cryogenic electron microscopy (cryo-EM), the interphase between Li metal and LiPON is successfully preserved and probed, revealing a multilayer mosaic SEI structure with concentration gradients of nitrogen and phosphorous, materializing as crystallites within an amorphous matrix. This unique SEI nanostructure is less than 80 nm and is shown stable and free of any organic lithium containing species or lithium fluoride components, in contrast to SEIs often found in state-of-the-art organic liquid electrolytes. Our findings reveal insights on the nanostructures and chemistry of such SEIs as a key component in lithium metal batteries to stabilize Li metal anode
    corecore