11 research outputs found

    Low-mass dark matter search results from full exposure of PandaX-I experiment

    Full text link
    We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1\;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I detector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6\%. With a fiducial liquid xenon target mass of 54.0\,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10\,GeV/c2^2, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.Comment: v3 as accepted by PRD. Minor update in the text in response to referee comments. Separating Fig. 11(a) and (b) into Fig. 11 and Fig. 12. Legend tweak in Fig. 9(b) and 9(c) as suggested by referee, as well as a missing legend for CRESST-II legend in Fig. 12 (now Fig. 13). Same version as submitted to PR

    Performances of a prototype point-contact germanium detector immersed in liquid nitrogen for light dark matter search

    No full text
    The CDEX-10 experiment searches for light weakly interacting massive particles, a form of dark matter, at the China Jinping Underground Laboratory, where approximately 10 kg of germanium detectors are arranged in an array and immersed in liquid nitrogen. Herein, we report on the experimental apparatus, detector characterization, and spectrum analysis of one prototype detector. Owing to the higher rise-time resolution of the CDEX-10 prototype detector as compared with CDEX-1B, we identified the origin of an observed category of extremely fast events. For data analysis of the CDEX-10 prototype detector, we introduced and applied an improved bulk/surface event discrimination method. The results of the new method were compared to those of the CDEX-1B spectrum. Both sets of results showed good consistency in the 0-12 keVee energy range, except for the 8.0 keV K-shell X-ray peak from the external copper
    corecore